
Report No: FF25R / 000
Date: april 1999

Corporate Sector
Centre de Recherche de Motorola - Paris

Development of an Asymmetric Digital
Subscriber Line (ADSL) Simulator in C/C++

and
Examination of Time and Frequency

Domain Equalization Methods

Author: Markus Mück
Approval: Marc de Courville

DISTRIBUTION: (1) Public
(2) ENST
(3) University of Stuttgart

MOTOROLA PROPRIETARY INFORMATION

2 MOTOROLA PROPRIETARY INFORMATION

Last name: Mück
First name: Markus

Report version: 1.0

Date of report version: 22/04/1999

Topic of the diploma
thesis:

Development of an Asymmetric Digital Sub-
scriber Line (ADSL) Simulator in C/C++ and
Examination of Time and Frequency Domain
Equalization Methods

Time frame: 01/11/1998 to 30/04/1999

Responsible person: Professor Joseph Jean Boutros
(ENST) Ecole Nationale Supérieure des

Télécommunications (ENST)
Département COMELEC
Email: boutros@com.enst.fr
Tel.: +33-1-45817678

Responsible person: Dr. Marc de Courville
(Motorola) Research Engineer

Email: courvill@crm.mot.com
Tel.: +33-1-6935-2518

Responsible Person: Professor Joachim Speidel
(University of University of Stuttgart
Stuttgart) Institut fuer Nachrichtenuebertragung

Email: speidel@inue.uni-stuttgart.de
Tel.: +49-711-685 8016/8017

MOTOROLA PROPRIETARY INFORMATION 3

4 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

Contents

Acknowledgement 10

List of symbols 12

Institutions involved in this diploma thesis 16

1 Introduction 18

2 Introduction to OFDM/DMT Systems 20

2.1 A mathematical presentation of OFDM/DMT 20

2.2 A discrete channel model . 25

2.3 The guard interval . 26

2.4 A complete OFDM/DMT system . 28

3 Introduction to ADSL 30

3.1 General description of an ADSL system 30

3.2 Some technical details . 31

3.3 An ADSL system in detail . 32

4 The ADSL simulator in C/C++ 34

4.1 The structure of the ADSL simulator . 34

4.2 The different modules of an ADSL system 34

4.2.1 The ADSL-frame builder . 36

4.2.2 CRC generation and CRC check 36

4.2.3 Energy scrambler and descrambler 36

4.2.4 Reed-Solomon encoder and decoder 36

4.2.5 Interleaver and deinterleaver . 36

4.2.6 Tone ordering and re-ordering . 37

4.2.7 Trellis coding . 37

4.2.8 VITERBI decoding . 37

MOTOROLA PROPRIETARY INFORMATION 5

CONTENTS

4.2.9 Constellation encoder and decoder 37

4.2.10 DFT and IDFT . 37

4.2.11 Time Domain Equalizer (TEQ) . 37

4.2.12 Frequency Domain Equalizer (FEQ) 37

4.2.13 Transmission channel . 38

4.3 Description of the ADSL simulator program design 38

4.3.1 Flowchart of the main function . 38

4.3.2 Flowchart of the transmitter functions 38

4.3.3 Flowchart of the receiver functions 38

5 Equalization methods for OFDM/DMT systems 43

5.1 Equalization using a multiplication in the frequency domain 43

5.2 Equalization using a Target Impulse Response (TIR) filter 45

5.3 Equalization in the time domain without guard interval 47

5.4 Discussion . 48

6 A new algorithm updating the Time Domain Equalizer 49

6.1 The filter structure . 49

6.2 Choosing the adaptive step size . 51

6.3 The update algorithm for the filter taps . 52

6.3.1 A proposition for a practical implementation 56

6.4 Complexity evaluation . 59

6.4.1 The complexity of basic operations 59

6.4.2 The complexity of Fast Fourier Transformation (FFT) algorithms . 59

6.4.3 The complexity of convolution and correlation algorithms 60

6.4.4 The complexity of the tap update calculation 61

6.4.5 The complexity of the Time Domain Equalization (TEQ) convolution 67

7 Simulation results 69

7.1 Parameters of the simulation . 69

7.2 Convergence properties without noise . 72

7.3 Convergence properties with Additive White Gaussian Noise 73

7.4 The resulting TEQ filters . 76

8 Conclusions 79

A Convergence properties of the LMS algorithm 81

A.1 Some definitions and properties . 81

6 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

A.2 Convergence properties of the LMS algorithm 82

B A practical implementation of the WSAF algorithm 85

B.1 Switching the inputs to the FFTs/IFFTs 85

B.2 Standard definitions of FFT/IFFT operations 86

C Software description of the ADSL simulator in C/C++ 87

D Top-level diagram of the ADSL simulator 89

E Module-level description of the ADSL simulator 90

E.1 simulator.C/.h . 90

E.2 algor_enc.C/.h . 90

E.3 channel.C/.h . 90

E.4 conv_encoder.C/.h . 91

E.5 coset_select.C/.h . 91

E.6 CRC.C/.h . 91

E.7 cvector.C/.h . 91

E.8 decoder.C/.h . 91

E.9 DEINTERL.C/.h . 91

E.10 Descrambler.C/.h . 91

E.11 FEC.C/.h . 91

E.12 fft.C/.h . 92

E.13 generate.C/.h . 92

E.14 INTERL.C/.h . 92

E.15 ivector.C/.h . 92

E.16 my_types.C/.h . 92

E.17 receiver_home_part1.C/.h . 92

E.18 receiver_home_part2.C/.h . 92

E.19 routines.C/.h . 92

E.20 Scrambler.C/.h . 93

E.21 tone_order.C/.h . 93

E.22 tools.C/.h . 93

E.23 transmitter_CO_part1.C/.h . 93

E.24 transmitter_CO_part2.C/.h . 93

E.25 viterbi_decoder.C/.h . 93

E.26 wei_encoder.C/.h . 93

MOTOROLA PROPRIETARY INFORMATION 7

CONTENTS

E.27 constants.h . 93

E.28 debug.h . 94

E.29 define.h . 94

E.30 switch.h . 94

F Function-level description of the ADSL simulator 95

F.1 How to read this description . 95

F.2 Transmitter . 95

F.2.1 algor_enc.C . 95

F.2.2 conv_encoder.C . 97

F.2.3 coset_select.C . 98

F.2.4 CRC.C . 99

F.2.5 FEC.C . 101

F.2.6 fft.C . 104

F.2.7 INTERLEAVER.C . 106

F.2.8 Scrambler.C . 107

F.2.9 tone_order.C . 108

F.2.10 transmitter_CO_part1.C . 109

F.2.11 transmitter_CO_part2.C . 110

F.2.12 wei_encoder.C . 110

F.3 Channel and TEQ update . 112

F.3.1 channel.C . 112

F.4 Receiver . 116

F.4.1 decoder.c . 116

F.4.2 DEINTERL.C . 117

F.4.3 Descrambler.C . 118

F.4.4 receiver_home_part1.C . 120

F.4.5 receiver_home_part2.C . 120

F.4.6 viterbi_decoder.C . 121

F.5 Supporting functions . 125

F.5.1 cvector.C . 125

F.5.2 generate.C . 127

F.5.3 ivector.C . 129

F.5.4 my_types.C . 131

F.5.5 routines.C . 134

F.5.6 tools.C . 135

8 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

F.6 INCLUDE files containing some useful #defines 137

F.6.1 constants.h . 137

F.6.2 debug.h . 143

F.6.3 define.h . 144

F.6.4 switch.h . 144

G The Parameter Files of the ADSL simulator 147

G.0.5 FILE_BITS_PER_TONE . 147

H The comments of the ADSL simulator during a simulation 148

Reference 151

MOTOROLA PROPRIETARY INFORMATION 9

CONTENTS

Acknowledgement

First of all, I am very thankful to Professor Joseph Jean Boutros for the supervising of this
diploma thesis and to Marc de Courville, Véronique Buzenac and Sébastien Simoens for
their help and encouragement.

Likewise, I would like to thank Jean-Noël Patillon for his technical aid and support,
Paul Courbis and Mathieu Cousin for their help in the informatics as well as Patrick Labbé,
Bertrand Muquet, Mickaël Batariere, Gregoire Hourlier, Sylvain Jaume, Arianna Filoramo
and Sandrine Vialle for their cooperation.

Last but not least, I want to give my sincere thanks to Professor Joachim Speidel of the
University of Stuttgart who accepted to supervise this diploma thesis in the framework of
the double diploma program for the University of Stuttgart.

10 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

MOTOROLA PROPRIETARY INFORMATION 11

CONTENTS

List of symbols

b(k) Vector of noise
bn Noise samples
B(k) Fourier transformation of the vector of noise b(k)
c(t) Channel impulse response of a linear channel
cn Channel taps
ci
n Channel taps in the frequency domain

C Vector containing the channel taps
Cc Matrix of channel taps used in order to calculate the received

symbols
C0(N) Matrix containing the channel taps (influence of the previous

symbol)
C1(N) Matrix containing the channel taps (influence of the latest sym-

bol)
Ci The elements of the fourier transform of C

CTIME
C

(N) Abbreviation for a convolution/correlation performed in the time
domain

CFAST
FC

(N) Abbreviation for a fast convolution/correlation performed in the
frequency domain domain without transformation back into time
domain

CFAST
TC

(N) Abbreviation for a fast convolution/correlation performed in the
frequency domain domain with transformation back into time
domain

dn Transmitted samples convolved with the TIR filter
di

n Transmitted samples convolved with the TIR filter in the fre-
quency domain

D Size of the guard interval
DFTC(N) Abbreviation for a complex N -points FFT
eany Discrete impulse response of any Time Domain Equalizer
eclassic Discrete impulse response of a classical Time Domain Equalizer
eDMT Discrete impulse response of a Time Domain Equalizer opti-

mized for DMT systems
en Residual error
ei
n Residual error in the frequency domain

En Vector of the residual error
Ei

n Vector of the residual error in the frequency domain
f0 Lower bound frequency
fm Frequency shift for the orthogonal subcarriers
FN Matrix performing the fourier transformation

12 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

F̃N Matrix performing the fourier transformation multiplied with a
constant

FN,i The ith line of the matrix performing the fourier transformation
FN×N

2

The first N
2 lines of the Matrix performing the fourier transfor-

mation
gk(t) Orthogonal subcarrier
gm(z) The mth SFB filter
gn TIR filter taps
gi
n TIR filter taps in the frequency domain

G(z) Polyphase matrix associated with the synthesis filter bank per-
forming the modulation

GMMSE
i Equalization coefficients using a Minimum Mean Square Error

(MMSE) approach
GZF

i Equalization coefficients using a Zero Forcing (ZF) approach
Gl

m(z) Type-I lth polyphase component of Gm(z)
Gn Vector containing the P TIR filter coefficients
hp(t) Matched filter
I(k) Incoming data stream
In Transmitted data
Ĩn Received data
In(k) The incoming data stream I(k) is multiplexed into the sub-

streams In(k)
IN Identity matrix
Ip
n The nth symbol conveyed by carrier p

Ĩp
n The estimated nthe symbol conveyed by carrier p

J Cost function
Ĵ Cost function estimated at the reception site
k The latest iteration step number
K Number of different orthogonal subcarriers gk(t)
L Number of TEQ filter taps
modC Abbreviation for complex modulus
N Number of samples per DMT symbol (without guard interval)
P Number of TIR filter coefficients
Pc Length of the channel impulse response
PDMT Energy per DMT symbol divided by the time duration of a DMT

symbol
P× Cross-Correlation vector of received samples and desired filter

response
r(k) Transmitted data convolved by the channel
r(t) Rectangular function
rn Arriving samples
ri
n Arriving samples in the frequency domain

r(n) The last N arriving samples
rk(n) The kth element of the vector RnN , i.e. rnN−k

R(k) Transmitted data convolved by the channel in the frequency do-
main

Rn Vector of the last N arriving samples
Ri

n Vector of the last N arriving samples in the frequency domain
Rn Matrix containing the last L vectors of the arriving samples

MOTOROLA PROPRIETARY INFORMATION 13

CONTENTS

S(k) Vector containing Sn(k) for K different n
s(k) Vector containing the inverse fourier transform of S(k)
s
ig(k) Corresponds to s(k) with a cyclic prefix being added

Sn(k) Information to be transmitted on DMT symbol subcarrier n at
time k

tr[k] Autocorrelation of arriving samples
T Time distance between two samples of a DMT symbol
TA Autocorrelation matrix of the received samples
Ts Time duration of an OFDM symbol
u(t) Normalized rectangular function
U Modal matrix of the autocorrelation Matrix TA

wn TEQ filter taps
wi

n TEQ filter taps in the frequency domain
Wn Vector containing the L TIR filter coefficients
Wo Vector containing the optimum L TIR filter coefficients
WN Constant for the fourier transformation
xn Transmitted samples
xi

n Transmitted samples in the frequency domain
Xn Vector of the last N transmitted samples
Xi

n Vector of the last N transmitted samples in the frequency do-
main

Xn Matrix containing the last P vectors of the transmitted samples
yn Received samples convolved with the TEQ filter
yi

n Received samples convolved with the TEQ filter in the fre-
quency domain

yn
p Matched filter outputs

αC Number of complex additions
αR Number of real additions
δi,i′ Kronecker symbol
∆W TEQ tap update
εn Error between the transmitted data In and the received data Ĩn

λi Weighting factor
Λ Matrix of weighting factors
µ Factor adapting the step size
µC Number of complex multiplications
µRC Number of real × complex multiplications
µR Number of real multiplications
σ2

Bi
Variance of the noise

σ2
ri Variance of the arriving samples in the frequency domain

σ2
s Variance of the elements of s(k)

τ(C) Sylvester matrix containing C0 and C1

C Complex numbers
R Real numbers

14 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

Operators

(·) ∗ (·) Convolution Operator
(·)? Complex Conjugate Operator
(·)t Transposition Operator
(·)H Operator for ((·)?)t

∇(·) Nabla Operator, Derivation Operator
(·) � (·) Component by Component Product (Product of Schur)
Diag(X) Diagonal matrix whose diagonal elements are the components for vector X
E(·) Statistical Expectation Operator
FLIP (X) Operator turning the vector X , i.e. the first element of X comes last in

FLIP (X), etc.
Z{·} z-Transformation Operator
Z−1{·} Inverse z-Transformation Operator

Abbreviations

ADSL Asymmetric Digital Subscriber Line
AWGN Additive White Gaussian Noise
BLMS Block Least Mean Square
CIR Channel Impulse Response
dB Dezibel
DIF Decimation in Frequency
DMT Discrete Multitone Transmission
DSP Digital Signal Processor
EC Echo Cancelling
FDM Frequency Division Multiplex
FEXT Far-End Crosstalk
FFT Fast Fourier Transformation
FIR Finite Impulse Response
GI Guard Interval
IFFT Inverse Fast Fourier Transformation
LMS Least Mean Square
MIMO Multiple-Input-Multiple-Output
MMSE Minimum Mean Square Error
NEXT Near-End Crosstalk
OFDM Orthogonal Frequency Division Multiplex
QAM Quadrature Amplitude Modulation
SFB Synthesis Filter Bank
SNR Signal-to-Noise Ratio
TDM Time Division Multiplex
TEQ Time Domain Equalizer
TIR Target Impulse Response filter
WSAF Weighted Sub-band Adaptive Filter
WSS Wide Sense Stationary
ZF Zero Forcing

MOTOROLA PROPRIETARY INFORMATION 15

CONTENTS

Institutions involved in this diploma
thesis

This diploma thesis was elaborated in the framework of the double diploma program be-
tween the University of Stuttgart and the Ecole Nationale Supérieure des Télécommunica-
tions de Paris in cooperation with the Motorola Center of Research CRM in Paris. These
institutions are presented in the following.

Motorola

Motorola is one of the world’s leading providers of wireless communications, semiconduc-
tors and advanced electronic systems, components and services. Major equipment busi-
nesses include cellular telephone, two-way radio, paging and data communications, per-
sonal communications, automotive, defense and space electronics and computers. Motorola
semiconductors power communication devices, computers and millions of other products.

Motorola maintains sales, service and manufacturing facilities throughout the world,
conducts business on six continents and employs more than 139,000 people worldwide.

CRM

CRM is one of Motorola’s Corporate Labs conducting research projects on a wide variety
of topics of concern to Motorola, often in cooperation with other distinguished public labs
in France or elsewhere in Europe. The center is quite new, having started in 1996, but it is
growing rapidly.

The Lab’s mission is to serve the needs of Motorola operations, particularly in Europe,
by developing technology and participating in standards and regulatory developments in the
region.

The CRM staff is working on various projects, involving the collaborations of researchers
with expertise in the fields of Radio Technologies, Signal Processing and Speech, Telecom-
munication systems and Standards, Networks, Advanced Services and applications, Soft-
ware and Hardware technologies, Devices and materials.

The center is located just to the south of Paris in an area close to several distinguished
schools (Supelec, Ecole Polytechnique, ENST) and Universities (Orsay,...) and are able to
draw on their outstanding faculty and students to help us in our work. Several cooperative
projects have been started and some are under discussion, and this is expected to become a
significant part of activity of the Lab.

16 MOTOROLA PROPRIETARY INFORMATION

CONTENTS

Ecole Nationale Supérieure des Télécommunications (ENST) de Paris

To be educated at ENST is first a matter of acquiring basic knowledge in the sciences and
techniques that make up the foundation of information and communications: telecommu-
nications, electronics, computing, networks, signals, and images. It is also discovering the
engineering profession and acquiring competency in economics and management as well as
in communication and expression. Languages also constitute an essential part of the degree
program. Students will not only have lectures but also practicals, projects, cases studies,
visits of industries, internships. Strong emphasis is led on team work.

Because of the constant development of its research potential, ENST ranks among the
best institutions in Europe and world-wide. In qualitative terms, the research potential of
the school is represented by more than 300 full-time researchers and almost 150 doctorate
students in 1992. The continual interaction between instruction and research in the laborato-
ries of the school ensures excellence in teaching and a sound knowledge of fields that are in
constant evolution. The ENST has close relations with the other "Grandes Ecoles" (France’s
top higher education institutes), particularly in the Group of Engineering Institutes of Paris,
among them some of the most prestigious schools in France.

University of Stuttgart

The University of Stuttgart is located in the southwest of Germany which is well-known
for its high-tech industry such as car manufacturing, machine tools, electronics, informa-
tion and communication technology and hosts about 18,000 students and 140 institutes in
14 departments ranging from architecture, natural sciences, mathematics, computer science,
history, languages, philosophy, social sciences to almost all of the engineering sciences. It
is one of the oldest technical universities and has been repeatedly ranked among the very
top universities in Germany. Its annual budget amounts to 500 million DM with more than
220 million DM provided for research by public and industrial sponsors. It hosts 14 centres
of excellence, various technology transfer centres, four graduate research programmes, and
the first federal supercomputing centre. Various large research centres (Max-Planck Institut,
Fraunhofer Gesellschaft, Deutsches Zentrum für Luft- und Raumfahrt) have strong connec-
tions to the University of Stuttgart - truly a future-oriented place for research and advanced
education.

MOTOROLA PROPRIETARY INFORMATION 17

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The aim of this diploma thesis is to provide a simulator of a complete Asymmetric Digital
Subscriber Line (ADSL) system in C/C++. For this, the elementary parts of an ADSL simu-
lator were available as stand-alone modules. Moreover, equalization methods are examined
and a new Time Domain Equalization (TEQ) algorithm is proposed and implemented into
the simulator.

Examining new equalization algorithms is motivated by the fact that latest propositions
(→ Jacky Chow [5, 6], Peter Chow [7], Cioffi [2], Vandendorpe [32, 33]) suffer either from
slow convergence or extremely high arithmetical complexity. We intend to find a solution
that improves the convergence speed considerably on the one hand with a reasonable in-
crease of the complexity on the other hand. The general idea behind the new algorithm is
the combination of Cioffi’s idea (→ Cioffi [2]) of using two filters with de Courville’s idea
(→ de Courville [10, 11]) to introduce weighting factors in order to speed up the conver-
gence properties.

The report is organized as follows. Chapter 2 presents a general introduction to Orthog-
onal Frequency Division Multiplex (OFDM) systems.

Chapter 3 discusses an ADSL system in general.

Chapter 4 presents the C/C++ ADSL simulator that has been developed during this
diploma thesis.

Chapter 5 discusses different equalization methods proposed by latest publications.

Chapter 6 presents the derivation of the new Weighted Sub-band Adaptive Filter (WSAF)
Time Domain Equalization algorithm adapted to the ADSL system. An optimized structure
for an implementation is proposed and the arithmetical complexity is calculated.

18 MOTOROLA PROPRIETARY INFORMATION

chapter 7 presents simulation results based on both, an ideal environment without noise
and a realistic environment with noise, with an erroneous estimation of the channel impulse
response, etc. The properties of the WSAF algorithm compared to the Least Mean Square
(LMS) algorithm are discussed.

chapter 8 resumes and interprets the results.

Appendix A demonstrates why the new WSAF algorithm converges faster than the stan-
dard algorithms.

Appendix B discusses implementation problems.

Appendix C to H present details of the ADSL simulator.

MOTOROLA PROPRIETARY INFORMATION 19

CHAPTER 2. INTRODUCTION TO OFDM/DMT SYSTEMS

Chapter 2

Introduction to OFDM/DMT
Systems

This Chapter presents a mathematical model describing Orthogonal Frequency Division
Multiplex (OFDM) systems. In the context of Digital Subscriber Line (xDSL) systems,
OFDM is better known under the acronym Discrete Multitone Transmission (DMT). A dis-
crete model of an OFDM/DMT system and a model for a time-discrete channel covering the
effect of interference between two OFDM/DMT symbols are presented. In the end, a short
discussion of the guard interval will end up this theoretical part. Afterwards, some general
information concerning OFDM/DMT systems is presented.

2.1 A mathematical presentation of OFDM/DMT

In an OFDM/DMT system an incoming data stream I(k) is multiplexed into several sub-
streams In(k) = I(k · K + n), 0 ≤ n ≤ K − 1. There are K different orthogonal
sub-carriers gk(t) which form altogether an orthogonal set of sub-carriers:

< gk(t − iTs), gk′(t − i′Ts) > =

+∞∫

−∞

gk(t − iTs)g
?
k′(t − i′Ts)dt (2.1)

= δi,i′δk,k′ (2.2)

with Ts being the time duration of an OFDM/DMT symbol and δi,i′ being the Kronecker
symbol

δi,i′ =

{
1 for i = i′

0 for i 6= i′
. (2.3)

20 MOTOROLA PROPRIETARY INFORMATION

2.1. A MATHEMATICAL PRESENTATION OF OFDM/DMT

Traditional systems use the following set of orthogonal sub-carriers:

gk(t) = u(t) · ej2·π k·t
Ts (2.4)

with u(t) being

u(t) =
1√
Ts

· r
(

t

Ts

)

(2.5)

and

r(t) =

{
1 for 0 ≤ t < 1
0 otherwise

. (2.6)

Now, we define the vector S(k)

S(k) = (S0(k), ..., SK−1(k))t (2.7)

where Sn(k) contains the information to be transmitted during an OFDM/DMT symbol
of duration Ts on sub-carrier n at time k (i.e. block number k). After modulation, the time
domain signal can be expressed as

s(t) =

K−1∑

k=0

∑

i∈Z

Sk(i) · δ(t − iTs) ∗ gk(t) (2.8)

=

K−1∑

k=0

∑

i∈Z

Sk(i) · gk(t − iTs) (2.9)

with “∗” being the convolution operator. After low-pass filtering and sampling s(t) at a
sample frequency f = 1

T = 1
Ts/N the N time domain samples sn(k) of block k are

sn(k) = s(kTs + nT), 0 ≤ n ≤ N − 1 (2.10)
!
= s[(kN + n)T] (2.11)

=

K−1∑

m=0

∑

i∈Z

Sm(i) · gm[(k − i)NT + nT]. (2.12)

MOTOROLA PROPRIETARY INFORMATION 21

CHAPTER 2. INTRODUCTION TO OFDM/DMT SYSTEMS

In order to prepare the z-transformation we define

Gl
m(z) =

∑

n∈Z

gm[(nN + l)T]z−n, (2.13)

G(z) =
[

Gk
m(z)

]

0≤k≤N−1,≤m≤K−1
. (2.14)

With

Z{xn} =
∑

k∈Z

xkz
−k (2.15)

denoting the z-transformation of any series (xn)n∈Z, it can be demonstrated (→Courville
[9]) that

sn(zN) =

K−1∑

m=0

Gn
m(zN)Sm(zN) (2.16)

=
(
Gn

0 (zN), ..., Gn
K−1(z

N)
)
· S(zN) (2.17)

with

S(z) = Z {S(n)} (2.18)

= [S0(z), ..., SN−1(z)]t (2.19)

and

s(z) = Z {s(n)} (2.20)

= [s0(z), ..., sK−1(z)]t (2.21)

= G(z) · S(z). (2.22)

An addition of all samples per symbol results in (→ Courville [9])

s(z) =

N−1∑

k=0

z−k · sk(z
N) (2.23)

= (G0(z), ..., GK−1(z))S(zN). (2.24)

22 MOTOROLA PROPRIETARY INFORMATION

2.1. A MATHEMATICAL PRESENTATION OF OFDM/DMT

So, we use the following expression for the digital filters of the synthesis bank in order
to produce s(z):

gm(z) =
N−1∑

l=0

Gl
m(zN) · z−l, 0 ≤ m ≤ K − 1. (2.25)

In the literature (→ Vaidyanatha [30])

• G(z) is denoted as the polyphase matrix associated with the synthesis filter bank
(SFB) performing the modulation,

• gm(z) is the mth SFB filter and

• Gm
l (z) is the Type-I lth polyphase component of Gm(z).

As mentioned before, traditional systems use a set of orthogonal filters like

gm(t) = u(t) · ej2πfmt, {fm = f0 +
m

Ts
, 0 ≤ m ≤ K − 1} (2.26)

with f0 being a kind of lower bound frequency. In a baseband-model (as applicable to
ADSL systems) there is f0 = 0. Therefore, we obtain from (2.12) with Ts = NT

sn(k) =
∑

i∈Z

u [(k − i)Ts + nT] ·
K−1∑

m=0

Sm(i) · ej2πfm((k−i)·Ts+nT) (2.27)

=
∑

i∈Z

u [((k − i) N + n)T] ·
K−1∑

m=0

Sm(i) · ej2π nm
N

︸ ︷︷ ︸

IDFT of
√

K·Sm(i)

(2.28)

=
1√
NT

·
K−1∑

m=0

Sm(k) · ej2π nm
N with Ts = NT. (2.29)

The symbol sequence {Sn(k)}n must be enlarged by Nz = N − K zeros for the IDFT
operation. In matrix representation, this may be written as

s(k) =
1√
T

F−1
N S(k) (2.30)

with

FN =
1√
N

(

W lk
N

)

0≤l≤N−1,0≤k≤N−1
, (2.31)

MOTOROLA PROPRIETARY INFORMATION 23

CHAPTER 2. INTRODUCTION TO OFDM/DMT SYSTEMS

where

WN = e−j 2π
N (2.32)

and

S(k) = (S0(k), · · · , SK−1(k),

Nz=N−K
︷ ︸︸ ︷

0, · · · , 0)t. (2.33)

Now, all the necessary steps for modulating an incoming data-stream I(k) are presented.
The OFDM/DMT symbols to be transmitted are given by (2.30). Fig.2.1 presents the dif-
ferent orthogonal carriers of an OFDM/DMT symbol in the frequency domain. Since all
gk(t) are rectangular functions, there is a superposition of sin(x)

x functions in the frequency
domain. It is clear that this result must be band-limited to ∆f = 1

Ts
in order to be able to

sample with fs ≥ 1
Ts

.

�����������
	����

�������

Figure 2.1: An OFDM/DMT symbol in the frequency domain.

24 MOTOROLA PROPRIETARY INFORMATION

2.2. A DISCRETE CHANNEL MODEL

2.2 A discrete channel model

We are going to assume that the latest OFDM/DMT symbol will only be influenced by the
previous symbol. In other words, the channel impulse response will be shorter than one
OFDM/DMT symbol. So, the channel can be modeled as proposed by Fig.2.2.

�

�����

���

� �

	�
���
	�
����

	�
��������

Figure 2.2: Discrete channel model.

Using a matrix representation and a channel with M = N coefficients

C = (c0, ..., cN−1)
t, (2.34)

the received vector r(k) can be expressed by

r(k) = C0(N)s(k) + C1(N)s(k − 1)

(2.35)

= [C1(N), C0(N)]

[
s(k − 1)

s(k)

]

(2.36)

=

0 cN−1 · · · c1

↓ ↘ ↘ ...
↓ ↘ cN−1

0 → → 0
︸ ︷︷ ︸

influence of the previous symbol

c0 0 → 0
c1 ↘ ↘ ↓
... ↘ ↘ 0

cN−1 · · · c1 c0
︸ ︷︷ ︸

influence of the latest symbol

[
s(k − 1)

s(k)

]

(2.37)

(2.38)

= τ(C)

[
s(k − 1)

s(k)

]

. (2.39)

In the literature, τ(C) is denoted as Sylvester matrix.

MOTOROLA PROPRIETARY INFORMATION 25

CHAPTER 2. INTRODUCTION TO OFDM/DMT SYSTEMS

2.3 The guard interval

The guard interval will allow to decrease or even to totally eliminate the influence of a
previous OFDM/DMT symbol to the latest symbol. In order to understand the idea, let’s
take a look at the influence of the previous OFDM/DMT symbol to the latest symbol, as
presented by Fig.2.3

DMT symbol k

n

2N-10

DMT symbol k-1

Channel impulse reponse

and so on...

guard interval

Figure 2.3: Influence of the previous DMT symbol.

Hereby, the channel impulse response shall be limited to M samples and is represented
by the vector

C = (c0, ..., cM−1, 0, ..., 0)
t . (2.40)

26 MOTOROLA PROPRIETARY INFORMATION

2.3. THE GUARD INTERVAL

The idea behind a guard interval is to add to a OFDM/DMT symbol

s(k) = (s0(k), ..., sN−1(k))t (2.41)

D > M samples representing a cyclic prefix:

s
ig(k) = (sN−D(k), · · · , sN−1(k), s0(k), · · · , sN−1(k))t. (2.42)

So, only the guard interval of one symbol is influenced by the previous symbol. The
guard interval may be skipped at the reception site, since the information herein is redun-
dant. In the end, we receive the circularly convolved data

r(k) = Cc(N)s(k) (2.43)

where

Cc(N) =

c0 cN−1 cN−2 · · · c1

c1 c0 ↘ ↘ ...
... ↘ ↘ ↘ cN−2

cN−2 ↘ ↘ cN−1

cN−1 cN−2 · · · c1 c0

(2.44)

= C0(N) + C1(N). (2.45)

The reconstructed vector after the FFT at the reception site is (→ chapter 6.3 discusses
the calculation of correlations/convolutions in the frequency domain)

R(k) = FNr(k) (2.46)

= FNCcF
−1
N S(k) (2.47)

=
√

NFNF−1
N ((FNC) � (FNs(k))) (2.48)

=
√

NDiag(FNC)S(k) (2.49)

=
√

N [C0S0(k), · · · , CN−1SN−1(k)]t (2.50)

with

(C0, · · · , CN−1)
t = FN (c0, · · · , cM−1, 0, · · · , 0)t. (2.51)

Therefore, the transmitted information is perfectly received, beside a constant multipli-
cation factor for each value. These coefficients must be determined by a learning sequence
known to the transmitter and receiver.

MOTOROLA PROPRIETARY INFORMATION 27

C
H

A
PT

E
R

2.
IN

T
R

O
D

U
C

T
IO

N
T

O
O

FD
M

/D
M

T
SY

ST
E

M
S

2.4
A

com
plete

O
F

D
M

/D
M

T
system

F
igure

F
ig.2.4

presents
the

m
odel

of
a

com
plete

O
F

D
M

/D
M

T
system

as
w

e
are

going
to

use
itin

this
diplom

a
thesis

(→
C

ourville
[9]).

insertion
interval
guard

conversion
to serial
parallel

supression

guard
interval

converter

analog to
digital

serial to
to parallel
conversion

sampling
rate T

modulation

sampling
rate T

P

�

S

DAC ADC

P

�

S

s

�

t

�

0

0

MODULATOR DEMODULATOR

C

�

k

�

r

�

t

�

r
�

k
�

G0

GK � 1

S0

�

z

�

S1

�

z

�

SK � 1

�

z

�

SK

�

z

�

SN � 1

�

z

�

sN 	 1

z

�

sN 	 D

z

�

s1

z

�

s0

z

�

s2

z

�

s
gi
0

z

�

S

�

z

�

s

�

z

�

sgi �

z

�

s
gi
D 	 1

z

�

s
gi
D

z

�

s
gi
P 	 1

z

�

r
gi
0

z
�

rgi �

z

�

R

�

z

�

R0

�

z

�

RK � 1

�

z

�

RK

�

z

�

RN � 1

�

z

�

rN 	 1

z

�

r
gi
P 	 1

z

�

r2

z

�

r1

z

�

r0

z

�r
gi
D 	 1

z

�

r
�

z
�

s

�

z

�G

�

z

�

G̃

�

z

�

demodulation
converter

digital to
analog

bnbn

Figure
2.4:

G
eneralO

F
D

M
/D

M
T

transm
ission

system
.

28
M

O
T

O
R

O
L

A
P

R
O

P
R

IE
T

A
R

Y
IN

F
O

R
M

A
T

IO
N

2.4. A COMPLETE OFDM/DMT SYSTEM

The parameters used in Fig.2.4 are briefly presented:

• Z−1 {S(z)} = S(k) = (S0(k), ..., SK−1(k))t is a vector where Sn(k) contains
the information to be transmitted during a OFDM/DMT symbol duration Ts on sub-
carrier n at time k (i.e. block number k).

• G(z) is denoted as the polyphase matrix associated with the synthesis filter bank
(SFB) performing the modulation. It can be inverted, since the filter bank is lossless:
G(z)G̃(z) = IN .

• s(k) = 1√
T

F−1
S(k) is the output vector of the IDFT unit (→ (2.30)).

• s
ig(k) = (sN−D(k), · · · , sN−1(k), s0(k), · · · , sN−1(k))t corresponds to s(k) with a

cyclic prefix (guard interval) being added.

• C(k) describes the discrete channel and contains the coefficients of the vector C =
(c0, ..., cM−1, 0, ..., 0)

t .

• bn describes the noise being added to the data after the channel.

• rig(n) contains the data arriving at the reception site, including the guard interval
which has been corrupted by the channel.

• r(n) corresponds to r
ig(n) without guard interval. If the channel impulse response is

shorter than the guard interval, the transmitted information can be recovered at 100%
(with the assumption that no noise has been added).

• R(z) = Z {R(n)} corresponds to the arriving data after the DFT unit.

• G(n) = (G0, ..., GK−1) correspond to the equalizing coefficients in the frequency
domain. They are sufficient if the channel impulse response is shorter than the guard
interval (with the assumption that no noise has been added).

MOTOROLA PROPRIETARY INFORMATION 29

CHAPTER 3. INTRODUCTION TO ADSL

Chapter 3

Introduction to ADSL

In this chapter a short overview of the Asymmetric Digital Subscriber Line (ADSL) Metallic
Interface standard (→ T1E1 [3]) is presented. Due to the limited size of this report, it
contains only the most elementary information which is absolutely indispensable for the
understanding of the chapters to follow. For further information the ADSL standard T1E1
[3], Chen [4], Saarela [28], the ADSL Forum [1] and Young [36] are recommended.

3.1 General description of an ADSL system

The ADSL standard (→ T1E1 [3]) defines transmission technology for simultaneous use
of normal telephone services (POTS, Plain Old Telephone Set), data transmission of max.
6 Mbit/s in the downstream, max. 640 kbit/s in the downstream and Basic-Rate Access
(BRA). In order to allow bidirectional data transmission, three possible solution have been
taken into account: Frequency Division Multiplex (FDM), Time Division Multiplex (TDM)
and Echo Cancelling (EC), → Saarela [28], Chen [4], ADSL standard T1E1 [3]. We are
going to consider only the Echo Cancelling option, since it offers the best dynamic and isn’t
too costly due to efficient Echo Cancelling solution in VLSI technology.

Downstream
Channel

POTS

f/kHz

Upstream
Channel

0 3.4 30 138 1104

Figure 3.1: The frequency spectrum of ADSL.

30 MOTOROLA PROPRIETARY INFORMATION

3.2. SOME TECHNICAL DETAILS

The ADSL system reference model (→ T1E1 [3]) contains the basic blocks of an ADSL
system:

ATU-C

V

Splitter

Digital Network

Public Switched
Telephone Network
(PSTN)

Splitter

ATU-R

U-RU-C

Plain Old
Telephone Set
(POTS)

Tsm
e.g.

star

Service Module

Service Module

Service Module

bus
or

Figure 3.2: The ADSL system reference model.

In Fig.3.2,

• V represents the logical interface between ATU-C and a digital network element such
as one or more switching systems,

• U-C is the abbreviation for loop interface - central office end,

• U-R is the abbreviation for loop interface - terminal end,

• ATU-C is the abbreviation for ADSL transceiver unit, central office end,

• ATU-R is the abbreviation for ADSL transceiver unit, remote terminal end and

• Tsm stands for interface(s) between ATU-R and Service Module(s).

3.2 Some technical details

The ADSL standard T1E1 [3] demands Discrete Multitone (DMT) modulation as presented
in chapter 2 and works directly in the baseband. So, f0 as defined by (2.26) is f0 = 0.
The downstream channels are divided in 256 4.3125-kHz wide tones, the upstream chan-
nels are divided into 32 subchannels. The frequency spectrum where the upstream channels
are placed into, may also be used by the downstream channels. Therefore, we cannot use a
simple bandpass filter in order to separate the upstream and downstream channels. That’s
why reflections caused by the hybrid circuit demand the use of an echo cancellation unit.
Additionally, there is usually a very long channel impulse reponse in an ADSL system (≈
half the size of a symbol). A guard interval that is longer than the channel impulse reponse
would largely limit the transmission rate. The solution is to introduce a linear equalizer for
reducing the length of the channel impulse reponse. So, a guard interval longer than the
resulting impulse reponse channel ∗ equalizer will be sufficient.

In order to create real values in the time domain, the inputs of the IFFT unit at the
transmission site must have hermitian symmetry. So, we use an IFFT unit with a double
capacity (2 × 256 carriers for the downstream channel and 2 × 32 carriers for the upstream
channels at the remote terminal end). The upper half of the carriers is defined as Zi′ =
(Z512−i′)

?, i = 257, ..., 511 (downstream channels) and Zi′ = (Z?
64−i′), i = 33, ..., 63

(upstream channels).

MOTOROLA PROPRIETARY INFORMATION 31

CHAPTER 3. INTRODUCTION TO ADSL

The transceiver parameters of a DMT system are summarized in Table Tab.3.1 for the
downstream channel (→ Chen [4]).

Type Value

Symbol rate 4 kHz
FFT size 512 samples
Cyclic prefix 32 samples
Synchronization Average 8 samples/symbol
Sampling rate 2.208 MHz
Transmit power 20 dBm
Time-Domain Equalizer 16 taps

Table 3.1: DMT downstream parameters.

With these parameters, the downstream DMT sub-carriers are spaced at 4.3125 kHz
intervals. The lowest carrier available is at 12.938 kHz. The highest carrier available is at
1099.6875 kHz. The parameters for the upstream channel are presented by Table Tab.3.2
(→ Chen [4]).

Type Value

Symbol rate 4 kHz
FFT size 64 samples
Cyclic prefix 4 samples
Synchronization Average 1 samples/symbol
Sampling rate 276 kHz
Transmit power 7 dBm
Time-Domain Equalizer 32 taps

Table 3.2: DMT upstream parameters.

3.3 An ADSL system in detail

A whole ADSL system is presented by Fig.3.3. It has been developed using the ADSL
standard [3] and Chen [4]. The different blocks are discussed in detail by chapter 4 which
presents the ADSL simulator that has been developed in C/C++ during this diploma thesis.

In some blocks of Fig.3.3 there are references to the ADSL standard [3]. (6.2.1.3), for
example, stands for chapter 6.2.1.3 of the ADSL standard [3].

32 MOTOROLA PROPRIETARY INFORMATION

3.3.
A

N
A

D
SL

SY
ST

E
M

IN
D

E
TA

IL

� � �� ��� �� � 	 �

� � �� � 	� � � � � � �� �

�� �
� � � � �� �
 � � � �� � � �� �� �
� �

� �
� ���
�

� �
� �

� � � �
� � � �

� � � � � � � � �

�� � �

� � � �� � � �
�� �� �
� � 	� �� � � �

�!
�
�

�
�
�
	

" #$ %

� �
 � � �� �

�& � � �� � � � � ���
� � ' � � �
 � � �

'(� � � �

� � � � � � �

� � � � �

� �� �

�
 �

�� � � �
� � � �

� � �� �� � �� � 	 �

� � � �
)� � � �

�� � � �
 �

� �� �

�

� � � � � � � � �

�� � �

� � � �� � � �
�� �� �
� � 	� �� � � �

� �
� �

� �
� ��*
�

� �
� �

� � � �
� � � �

� � � �+ �
� �, �- � .
� � � �+ �
� �, �- � .

� (� �
�� � � � �

/0 1 �

� � �, � - � - � - � .

� � �, � - � - � - � .

)� �� �
� � 	� �, � - � - � .

2 % �
2 % �
2 % �

� �3
/0 1

� � �
� '� � 4

� � �
� '� � 4

�� 3� � � �+ �
 � � �

��3� � � �+ �
 �� �

5� � �3 %�
� + � ��� �� � � � � �� �

� � � � � �� � � � � � � � �

5� � �3 % �
� + � ��� � � � �� � �� �

� � � � � �� � � � � � � � �

��3�� �� �
� � 	 �� �

 % �
 % �
 % �
 % �

2 % �
2 % �
2 % �

6 � ' �
7 �� ��

� �

� � � � � � � � �

�� � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � �� � �� � , � - � .

5 8 � � �

� � � � � � �
9 � � � � ��

 � � � � �

� � �� �� �

:; 8 , :<= > ; . ?

) �@ $

& � � '
�� �
� 8 � � - - - � �

" #$ % ��
� � ' � � � �� �

� � 	� � �� � �� � + � �� +

� �
� �

�

� � �

 � � �� � �� �

�@ $
� �� � �� � �

� � �

� � �
�

�� �
� � � � �� �
 � � � �� � � �� �

 � � �� � 	� � � � � � �� �� � � � � � � � �

�� � �

� � � � � � � � � �

� � � � � � � � � �

� � � �

� (+ � �
 � � � �

�� � 	� � � � � �

� � � � � �3 � � �� � �� �

�� � & �� � � � � � �

� � � � � � � � � � , @ 6 7 .5� � �3 % �
� + � � �� � �� �, � - � - � .

�� � & �� � � � � � �

� � � � � � � � � � , @ 6 7 .5� � �3 % �
� + � � �� � �� �, � - � - � .

�� � 	�
 � � � � � �

� � �

 � �

�� �� � �� �

�� � �� � & � �

� � �
 �� � 9
� �

A

� � � �� � �� � �

@ � � � �� � �(� � + � ��6 � � �
 �B � �,@ 6 C .

� � �
� � �

� � + � ��6 � � �
 �B � �

$ � + �
, $ 6 C .

Figure
3.3:

A
com

plete
A

D
SL

transceiver,rem
ote

term
inalend.

M
O

T
O

R
O

L
A

P
R

O
P

R
IE

T
A

R
Y

IN
F

O
R

M
A

T
IO

N
33

CHAPTER 4. THE ADSL SIMULATOR IN C/C++

Chapter 4

The ADSL simulator in C/C++

During this diploma thesis an Asymmetric Digital Subscriber Line (ADSL) simulator in
C/C++ has been developed. But, the system didn’t have to be designed from the beginning.
Some modules have been written before as separate, stand-alone programs. They had to be
modified and - in some cases - to be corrected. The VITERBI decoder, for example, didn’t
work properly and quite some effort was necessary to build up a working simulator. In this
chapter, the different modules of the ADSL system are briefly mentioned and the structure
of the ADSL simulator is presented and discussed. A summary of all functions can be found
in the appendixes C to H.

4.1 The structure of the ADSL simulator

The ADSL-SIMULATOR intends to simulate the Time Domain Equalizer (TEQ) training,
two different kinds of transmitters (central-office transmitter and home transmitter), a chan-
nel and the home receiver. Therefore, the program can be divided into 5 parts (→ appendix
C to H):

• the central office transmitter;

• the home transmitter;

• the equalizer training;

• the channel (for the central-office data);

• the home receiver.

4.2 The different modules of an ADSL system

The transmission part of an ADSL transceiver consists of the following modules (→ Fig.3.3):

• Serial-to-Parallel conversion and ADSL-frame builder,

• CRC generation (→ T1E1 [3] section 6.2.1.3),

34 MOTOROLA PROPRIETARY INFORMATION

4.2. THE DIFFERENT MODULES OF AN ADSL SYSTEM

• Energy scrambler (→ T1E1 [3] section 6.3),

• Forward Error Correction (FEC), Reed-Solomon coding (→ T1E1 [3] section 6.4.1),

• Interleaver (→ T1E1 [3] section 6.4.2),

• Tone ordering (→ T1E1 [3] section 6.5),

• Optional: Trellis coding (→ T1E1 [3] section 6.6),

• Constellation Encoder (→ T1E1 [3] section 6.6.4),

• Inverse Discrete Fourier Transformation (IDFT) (→ T1E1 [3] section 6.9.2, 7.9.2)
and

• Adding of the guard interval (→ T1E1 [3] section 6.10, 7.10).

The reception part of an ADSL transceiver consists of (→ Fig.3.3):

• Serial-to-Parallel conversion,

• Time Domain Equalization (TEQ) (→ Chapter 6 and Chen [4]),

• Discrete Fourier Transformation (DFT),

• Frequency Domain Equalization (FEQ),

• Tone re-ordering,

• Symbol-Bit conversion (Constellation decoder),

• If convolutional coding was applied: Trellis Decoding (VITERBI decoder),

• Deinterleaving,

• Reed-Solomon decoder and error correction,

• Energy-Descrambling and

• CRC error check.

The following modules were available as stand-alone programs: CRC generation/check,
energy scrambler/descrambler, Reed-Solomon coding/decoding with error correction, con-
volutional encoding, VITERBI-decoder, Discrete Fourier Transformation (DFT) and In-
verse Discrete Fourier Transformation (IDFT).

Beside an adaption of these parts, the following modules had to be newly developed:
The ADSL-frame builder, the Interleaver, the deinterleaver, the tone ordering, the tone re-
ordering, a channel, the noise generator, the Time Domain Equalizer (using a weighted LMS
algorithm, → chapter 6) and the frequency domain equalizer (using a simple multiplication
with one coefficient per carrier). Additionally, the whole simulator had to be designed care-
fully in order to ensure portability and to allow further extensions. An echo cancellation is
not yet implemented.

The following sections present rapidly the different modules of the ADSL simulator. For
general information, the ADSL standard T1E1 [3] and Chen [4] are recommended. Detailed
information concerning the simulator is presented in annex C to H.

MOTOROLA PROPRIETARY INFORMATION 35

CHAPTER 4. THE ADSL SIMULATOR IN C/C++

4.2.1 The ADSL-frame builder

The ADSL standard T1E1 [3], section 6.2 describes the framing. A superframe structure
is presented, containing 68 frames and one synchronization symbol and having a periode of
250µsec. One frame is placed into one DMT symbol and is split up into a fast data buffer
and a interleaved data buffer. The fast data buffer is not interleaved and will be used for
delay-sensitive applications. The interleaved data buffer will be used for video-on-demand
services, for example. In each buffer there are up to four simplex channels ASX (AS0, AS1,
AS2, AS3) and three duplex channels LSX (LS0, LS1, LS2).

4.2.2 CRC generation and CRC check

At the transmission site, a cyclic redundancy check (CRC) codeword is calculated for each
DMT frame. So, the receiver can easily determine whether a transmission error occurred or
not. The error itself cannot be corrected by this codeword.

4.2.3 Energy scrambler and descrambler

Energy scrambling is used in order to obtain an energy distribution without any energy peaks
in the ideal case.

4.2.4 Reed-Solomon encoder and decoder

The size of a Reed-Solomon codeword is n = r + k where r is the degree of the generator
polynomial, n is the codeword size depending on the number of bits assigned to either fast
or interleaved buffer and k is the message sequence size. For Reed-Solomon codes the
minimum distance dmin is dmin = r + 1. The number of errors that can be corrected is
therefore t = dmin−1

2 = r
2 (→ Chen [4], Lin [23]). In the ADSL standard there are the

following constellations defined: 16 FEC redundancy bytes for 194 interleaved data bytes,
12 FEC redundancy bytes for 146 interleaved data bytes, 16 FEC redundancy bytes for 196
interleaved data bytes or 16 FEC redundancy bytes for 192 interleaved data bytes.

4.2.5 Interleaver and deinterleaver

Usually, the OFDM/DMT systems do not perform better than single carrier modulation
systems if used without any coding or frequency interleaving. Since a given frequency or
the whole spectrum are not likely to be strongly attenuated by a channel fading during a long
period of time, the symbols are transmitted at different times and frequencies. So, a small
number of them can simultaneously be degraded by fading. This reordering is performed by
the interleaver. The performance of the system is largely increased (→ Courville [9]). The
interleaver is implemented in a circular shift register, deinterleaver is implemented using a
circular buffer.

36 MOTOROLA PROPRIETARY INFORMATION

4.2. THE DIFFERENT MODULES OF AN ADSL SYSTEM

4.2.6 Tone ordering and re-ordering

The tone ordering algorithm assigns to the different carriers first the fast buffer data begin-
ning with the carriers with the smallest number of bits assigned to them. Then, the inter-
leaved buffer data is assigned the remaining carriers. Again, the carriers with the smallest
number of bits assigned to them are used at first. The tone re-ordering algorithm has to
re-establish the correct data order.

4.2.7 Trellis coding

The ADSL standard T1E1 [3] defines a 16-state 4-dimensional trellis code (Wei’s encoder).
The coding rate is R = 2

3 . With the added redundancy, the minimum distance between two
constellation points is improved (→ Proakis [27]).

4.2.8 VITERBI decoding

The VITERBI algorithm allows a maximum likehood decoding (→ Min [24], Proakis [27]).
The sequence will be found that has most probably been sent.

4.2.9 Constellation encoder and decoder

The constellation encoder selects for each carrier an odd-integer point (X,Y) from the
square-grid constellation based on b bits that have to be transmitted. It is distinguished
between odd and even values of b (ADSL standard T1E1 [3]). The constellation decoder
converts the received odd-integer points (X,Y) into the originally sent data.

4.2.10 DFT and IDFT

The Discrete Fourier Transformation (DFT) and the Inverse Discrete Fourier Transforma-
tion (IDFT) is performed using the Fast Fourier Transformation (FFT) algorithm.

4.2.11 Time Domain Equalizer (TEQ)

In the classical case (→ Chen [4]), the Time Domain Equalizer (TEQ) is implemented using
a Target Impulse Response (TIR) filter as proposed by chapter 5.2. So, after truncating
the guard interval, the arriving symbol is supposed not to be influenced by any previous
symbols. The coefficients of the filters are determined during the learning sequence.

4.2.12 Frequency Domain Equalizer (FEQ)

In the classical case (→ Chen [4]), the frequency domain equalizer is implemented using a
multiplication of each carrier with a coefficient. The coefficients are determined during the
learning sequence.

MOTOROLA PROPRIETARY INFORMATION 37

CHAPTER 4. THE ADSL SIMULATOR IN C/C++

4.2.13 Transmission channel

For the transmission channel, a discrete model is used as proposed by chapter 2.2.

4.3 Description of the ADSL simulator program design

This section describes the design of the ADSL simulator program design by presenting the
following flowcharts:

• Flowchart of the main function,

• Flowchart of the central office transmitter, part 1 (preparation of one superframe),

• Flowchart of the central office transmitter, part 2 (preparation of one DMT symbol),

• Flowchart of the remote terminal end receiver, part 1 (reception of one DMT symbol),

• Flowchart of the remote terminal end receiver, part 2 (decoding of one superframe),

• Flowchart of the channel.

The Time Domain Equalizer (TEQ) will be discussed in detail by chapter 6.

4.3.1 Flowchart of the main function

Fig.4.1 presents the flowchart of the main function of the ADSL simulator. Here, the func-
tions for preparing a superframe for transmission (→ Fig.4.2), for preparing one DMT
symbol for transmission (→ Fig.4.3), for receiving one DMT symbol at the reception site
(→ Fig.4.4), for treating one superframe at the reception site (→ Fig.4.5) and for emulating
the channel are called. In the end, the received and transmitted data are compared and the
number of errors is counted.

4.3.2 Flowchart of the transmitter functions

The transmitter modules are placed into two different functions. The function transmit-
ter_CO_part1 (→ Fig.4.2) contains all operations applied to the whole superframe and
transmitter_CO_part2 (→ Fig.4.3) all operations that are applied to the different DMT sym-
bols separately.

4.3.3 Flowchart of the receiver functions

The receiver modules are placed into two different functions. The function receiver_home_part1
(→ Fig.4.4) contains all operations applied to the different DMT symbols separately and re-
ceiver_home_part2 (→ Fig.4.5) all operations that are applied to the whole superframe.

38 MOTOROLA PROPRIETARY INFORMATION

4.3. DESCRIPTION OF THE ADSL SIMULATOR PROGRAM DESIGN

Check for transmission errors

(Multiplexing, CRC generation, Reed-Solomon encoding,

Memory allocation and loading of data (files to be transmitted)

Building up internal transmission parameters using the
configuration file (superframe properties, bits per tone, ...)

function "transmitter_CO_part1.C"
Preparation of one superframe at the central office in the

tone-ordering, energy scrambling, interleaving)

in the function "transmitter_CO_part2.C"
Transmission of one DMT symbol of the latest superframe

(Trellis coding, IFFT)

Channel

Reception of one DMT symbol in the function
"receiver_home_part1.C"

(FFT, Trellis decoding)

"receiver_home_part2.C"

error correction, CRC generation, tone ordering)
(time deinterleaving, descrambling, Reed-Solomon decoding,

End

Transmission/Reception of the whole superframe

Transmission of all data

Checking of the transmission/reception parameters
(do the files exist that have to be transmitted ?, ...)

Complete decoding of one superframe in the function

Figure 4.1: The main function of the ADSL simulator.

MOTOROLA PROPRIETARY INFORMATION 39

CHAPTER 4. THE ADSL SIMULATOR IN C/C++

(Getting data to be placed into one superframe, separating
Multiplexing

between ASX- und LSX-channels)

Initialization of internal buffers at the first call of the function

Generation of the CRC byte for the superframe

Energy scrambling

Reed-Solomon encoding
Placing the data into Mux-data-frames as defined by

the ADSL standard

Interleaving

Returning of one superframe
Operations that have to be done for each DMT symbol
separately will be done by "transmitter_CO_part2.C"

Figure 4.2: The function preparing one superframe for transmission.

40 MOTOROLA PROPRIETARY INFORMATION

4.3. DESCRIPTION OF THE ADSL SIMULATOR PROGRAM DESIGN

Initialization of internal buffers at the first call of the function

Trellis encoding and constellation encoding

Inverse Fast Fourier Transformation (IFFT)

Tone ordering

(Time Domaine Data)

Returning of one DMT symbol

Figure 4.3: The function preparing one DMT symbol for transmission.

Initialization of internal buffers at the first call of the function

Building up the tone-reordering table

Fast Fourier Transformation (FFT)

Trellis decoding and constellation decoding

Returning the data that was carried by the latest

DMT symbol

Figure 4.4: The function receiving one DMT symbol.

MOTOROLA PROPRIETARY INFORMATION 41

CHAPTER 4. THE ADSL SIMULATOR IN C/C++

output-buffers

Copying the data of the ASX and LSX channels in separate

Initialization of internal buffers at the first call of the function

Generation of the CRC-byte for the received superframe

Deinterleaving

Energy descrambling

Reed-Solomon decoding and error correction

Figure 4.5: The function treating one superframe at the reception site.

42 MOTOROLA PROPRIETARY INFORMATION

Chapter 5

Equalization methods for
OFDM/DMT systems

This chapter presents the different equalization methods for OFDM/DMT proposed by the
literature and latest publications. The advantages and disadvantages of the different propo-
sitions are presented and discussed.

5.1 Equalization using a multiplication in the frequency domain

The equalization can be done using a multiplication of each carrier with a complex coeffi-
cient depending on the channel when the guard interval is longer than the memory of the
channel. Fig.5.1 explains why.

���������
	�������

�

����������	�����������

�����! " �# �%$&	('�)
�&� #+*,# '� � #

-) �.*0/ $ 210#3*546� �

798

:6;=< �

7 8

>

>

Figure 5.1: A guard interval larger than the memory of the channel.

With the guard interval being shorter than the memory of the channel, the distortion
provoked by a OFDM/DMT symbol DMT (k − 1) in the OFDM/DMT symbol DMT (k)
does only effect the guard interval of DMT (k).

MOTOROLA PROPRIETARY INFORMATION 43

CHAPTER 5. EQUALIZATION METHODS FOR OFDM/DMT SYSTEMS

This interval contains redundant information (it’s a cyclic extension of the correspond-
ing OFDM/DMT symbol) and is truncated at the reception site as demonstrated in chapter
2.3.

Depending on the data sent at the transmission site (→ (2.7))

S(k) = (S0(k), ..., SK−1(k))t (5.1)

and the channel coefficients described by the vector

C = (c0, ..., cM−1, 0, ..., 0)
t , (5.2)

the received information R(k) is (→ (2.50))

R(k) =
√

NDiag(FNC)S(k) (5.3)

=
√

N [C0S0(k), · · · , CN−1SN−1(k)]t. (5.4)

A simple multiplication of each output of the DFT unit at the transmission site with a
constant coefficient is sufficient for the equalization. Desiring a Zero Forcing (ZF) equal-
ization, the equalizing coefficients are

GZF
i =

1

Ci
, (5.5)

in the case of a Minimum Mean Square Error (MMSE) equalization, the coefficients are

GMMSE
i =

C?
i

|Ci|2 + σ2
Bi

/σ2
s

(5.6)

with B(k) = FNb(k) (→ de Courville [11]) where b(k) are the noise samples. Hereby,
σ2

Bi
is the variance of the Additive White Gaussian Noise (AWGN), σ2

s is the variance of the
transmitted symbols.

44 MOTOROLA PROPRIETARY INFORMATION

5.2. EQUALIZATION USING A TARGET IMPULSE RESPONSE (TIR) FILTER

5.2 Equalization using a Target Impulse Response (TIR) filter

In this section we are going to discuss the case of a channel impulse response being longer
than the guard interval. It will be explained why this problem can be resolved with a com-
bination of a Target Impulse Response (TIR) filter and a Time Domain Equalization (TEQ)
filter (→ Chow [5]). The approach presented here requires a learning phase in order to train
the two filters. The TIR filter will only be used during that training sequence. Afterwards,
the resulting Time Domain Equalizer (TEQ) will allow to confine the channel impulse re-
sponse.

In the OFDM/DMT context, the classical idea of minimizing the Mean Square Error
(MSE)

E
[
|εn|2

]
= E

[

|In − Ĩn|2
]

!
= min, (5.7)

with In representing the transmitted data and Ĩn the received data, isn’t the best solution.
For a channel impulse response which is longer than the guard interval, it will be sufficient
to shorten the channel impulse response to a size smaller than the guard interval. Then, the
remaining error can be easily corrected by a frequency domain equalization with a multipli-
cation as explained in chapter 5.1.

In other words, our Time Domain Equalizer must not correct the received data in a way
that

In ≈ Ĩn ∗ eclassic,n, (5.8)

with eclassic,n being the time discrete impulse response of the classical Time Domain
Equalizer. The Time Domain Equalizer in our OFDM/DMT system will have the optimal
coefficients when the equalized data

Iequalized,n = Ĩn ∗ eDMT,n (5.9)

correspond to the result of the original data In convolved with any channel impulse
response eany,n which is shorter than the guard interval and constant:

Iequalized,n = Ĩn ∗ eany,n. (5.10)

The remaining distortion can be corrected by a multiplication of each carrier with a con-
stant coefficient which must be calculated during a learning process (→ chapter 5.1).

MOTOROLA PROPRIETARY INFORMATION 45

CHAPTER 5. EQUALIZATION METHODS FOR OFDM/DMT SYSTEMS

The general idea of the approach with a TIR-Filter is demonstrated by Fig.5.2.

���

����
����

���
���

����

�
	 � �������	 �����������
� �������� �
� ��!���" �#%$�&('*) + �

+ ��

,-�

,.��

/

0 �1���2�� � �

3 �
465 �7!.��	 89:�.� ����
; � #%$=<?>:) @A

Figure 5.2: Equalization using a Target Impulse Response (TIR) filter.

Chow [7] has demonstrated that the mean square error Ree is

Ree = E[e(k)e?(k)] (5.11)

= g? ·
(
Rxx − RxrR

−1
rr Rrx

)
· g (5.12)

= g? · Rx|r · g. (5.13)

Hereby,

rn = xn ∗ cn + bn (5.14)

with bn being the samples of the added noise. Now, the optimal TIR coefficients g must
be found. This results in an eigenvalue problem which is quite costly in computation time.
The time equalizer coefficients are then updated using

w = g? · Rxr · R−1
rr (5.15)

as also shown by Chow [7].

46 MOTOROLA PROPRIETARY INFORMATION

5.3. EQUALIZATION IN THE TIME DOMAIN WITHOUT GUARD INTERVAL

5.3 Equalization in the time domain without guard interval

Vandendorpe [32] and [33] has analyzed this problem. His aim is to determine an opti-
mal prediction Ĩn of the transmitted data In in the time domain using a separate matched
filter and a Multiple-Input-Multiple-Output (MIMO) equalization filter for each used carrier.

The transmitted signal is

x(t) =

√

2 · PDMT

N
·

N∑

p=0

∞∑

n=−∞
Ip
n · u(t − nT) · ej2·π· p·t

T , (5.16)

with Ip
n being the nth symbol conveyed by carrier p, PDMT = N ·Eb

T and Eb being the
energy per bit. u(t) is the symbol shape which is assumed to be rectangular in our case.
Having a linear channel c(t) the received signal is

r(t) =

√

2 · PDMT

N
·

N∑

p=0

∞∑

n=−∞
Ip
n ·

(

u(t − nT) · ej2π· p·t

T

)

∗ c(t) + (5.17)

noise (5.18)

=

√

2 · PDMT

N
·

N∑

p=0

∞∑

n=−∞
Ip
n · hp(t − nT) + noise. (5.19)

Using a different matched filter h?
p(t−nT) for each carrier p, the matched filter outputs

are

yn
p =

1

T ·
√

2 · PDMT
·

∞∫

−∞

r(t) · h?
p(t − nT)dt. (5.20)

Using an equalizer with 2·K+1 coefficients for each matched filter output, the estimated
sequence is

Ĩq
n =

N−1∑

p=0

K∑

m=−K

cm
q,p · yn−m

p . (5.21)

MOTOROLA PROPRIETARY INFORMATION 47

CHAPTER 5. EQUALIZATION METHODS FOR OFDM/DMT SYSTEMS

The N × N × (2 · K + 1) filter coefficients can be calculated by using the orthogonal
principle (→ Moulines, Boutros [25])

E
[

εk
q · (yk−l

p)?
]

= 0 (5.22)

where

εk
q = Ĩn

q − In
q . (5.23)

This results in a linear equation system with N × N × (2 · K + 1) equations. It must
be solved during the learning procedure. Afterwards, there is still a large number of mul-
tiplications to be performed with every arriving OFDM/DMT symbol. Vandendorpe [32]
uses for his examples a OFDM/DMT symbol with N = 4 carriers. Hereby, a system with
N × N × (2 · K + 1) different equations can be easily solved, compared to the number of
equations in the case of an ADSL OFDM/DMT-symbol with N = 256 different carriers.

5.4 Discussion

The most simple solution for a OFDM/DMT system is to choose a guard interval that is
larger than the channel impulse response. In this case, equalizing with a simple multiplica-
tion with a coefficient for each carrier in the frequency domain can be applied (→ chapter
5.1). Unfortunately, this method limits the transmission speed considerably. Since the guard
interval is shorter than the channel impulse response for the ADSL system, this method is
not suitable.

Equalization using a Target Impulse Response (TIR) filter (→ chapter 5.2) is the classi-
cal method for ADSL systems. The coefficients are determined during a learning sequence
where the transmitted data are already know to the receiver. Even if the calculation of the
coefficients might be costly in computation time (Chows solution results in a costly eigen-
value problem), after having determined these values, no further update is necessary and
there is a simple FIR filter with a small number of taps at the reception site.

Vandendorpes solution (→ chapter 5.3) is interesting, but too costly for systems with a
large number of carriers. It may be used in future when DSPs become more powerful.

In the end, the classical solution with a Target Impulse Response (TIR) filter seems to
be the most promising idea.

48 MOTOROLA PROPRIETARY INFORMATION

Chapter 6

A new algorithm updating the Time
Domain Equalizer

This chapter presents the derivation of the update algorithm for the Time Domain Equal-
ization (TEQ) filter using the Weighted Sub-band Adaptive Filter (WSAF) algorithm (→
de Courville [10]). With the WSAF algorithm we use our knowledge about the mean en-
ergy of the different orthogonal carriers in order to speed up the convergence properties (→
appendix A).

6.1 The filter structure

Fig.6.1 presents the general idea of a system using an adaptive TEQ filter and a TIR filter
containing always the first taps of the latest estimation Channel Impulse Response (CIR) ∗
TEQ.

���

����
����

� �
���

����

�
	 � � �����	 � ����� � �
� �������� ��� ������� � !�" #�$ % �

% ��

& �

&'��

(

) �������'�� �

* �
+�, ���-� 	 .-/��� � ��
0/� !�1�2/$ 34

Figure 6.1: The TEQ and TIR filters.

Based on the idea of Cioffi [2], we are going to use a Target Impulse Response (TIR)
filter whose impulse response is updated after each iteration step with the first taps of the
Channel Impulse Response (CIR) of the ADSL channel convolved with the latest TEQ filter
coefficients. The number of taps for the TIR filter will correspond to the length of the guard
interval of the Discrete Multi-Tone (DMT) symbols. The classical approach adapts the
TEQ filter by using the square of the resulting impulse response CIR ∗ TEQ after the guard
interval as the criterion to be minimized (Least Mean Square (LMS) algorithm), where “∗”
denotes the convolution operator. We are taking up the proposition of de Courville [10] to
introduce additionally a weighting factor for the square errors in each sub-band (Weighted
Sub-band Adaptive Filter (WSAF), → appendix A).

MOTOROLA PROPRIETARY INFORMATION 49

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

Hereby,

• bn is the noise added to the samples after the channel.

• cn are the channel coefficients.

• dn are the transmitted samples convolved with the TIR filter.

• en is the difference between the samples dn and yn, called error.

• gn are the TIR filter coefficients.

• rn are the received samples.

• wn are the TEQ filter coefficients.

• xn are the transmitted samples.

• yn are the received samples convolved with the TEQ filter.

• (·)i denotes the corresponding samples in the frequency domain.

During the learning sequence the TEQ filter will be adapted by using the weighted
square error

Ĵ =

N
2
−1

∑

i=0

λi · |di
n − yi

n|2 (6.1)

as the criterion to be minimized.

We calculate the sum from i = 0 up to i = N
2 − 1, i.e. only half the energy spectrum

is used for the error calculation. This is reasonable, since the ADSL standard [3] demands
hermitian symmetry in the frequency domain in order to create real time domain values (→
chapter 3):

Zi = (ZN−i)
? , i =

N

2
+ 1, · · · , N − 1. (6.2)

We are going to see later in this chapter, that a summation up to i = N just limits the
solution space to real numbers. So, the calculation complexity can be optimized.

In the ideal case, the resulting impulse response cn ∗ wn will be shorter than the guard
interval of the DMT symbol. In reality, the energy of the resulting impulse response will
be concentrated in the first taps, but the remaining taps will still not be exactly zero (→
Fig.6.2).

50 MOTOROLA PROPRIETARY INFORMATION

6.2. CHOOSING THE ADAPTIVE STEP SIZE

0 100 200 300 400 500

0

1

2

3

4

5
x 10

−3

sample number

A
m

pl
itu

de

Channel Impulse Reponse (CIR)

0 100 200 300 400 500
−5

0

5
x 10

−4

sample number

A
m

pl
itu

de

Channel Impulse Reponse * TEQ

�����������
	�� �����	 ��������������� ��� ��� ������� �!�"�
#�$&%�')(���������
	*� �,+������	 �-�

������.���	 �"�!/ ����0&/ �!�
�!���&1�/ 2� $ ��3��/ �
465 ����	 / 7��,8&� 1 4�9 �

:

� �3�,�"��/ ;�����	 (�-����<��,�"�=8 �,�!��	 �!/ �">
/ �����	 � �&8 ��������� �2��� �&?-1 4�9
/ ���!����8 ����8��!�����3�!�"�=>�����8 ;@/ ������8 .���	

1A���&�!���-���&��� �!���&8 ������	 �,/ ��>�/ 2����	 ���
8 �,�����"�����A� �&?�1 4�9 / �A���-��/ �����8 �!�����
<

# / @B # � ����8��!��� (����.���	 ���!/ ����0&/ �!�3�!���&1�/ �� $ �"���/ �
465 ����	 / 7��,8&� 1 4�9 �!<��!���&8��,�!��	 �!/ �">3/ �����	 � �&8 ��������� �
�A� ��?�1 4�9 / ���!�"��8 ����8��,�����3�,�"�=>����-8�;@/ ������8 .���	
��� �!��� $=C 1D� E��F���	 � :

�-�A/ ��/ ���,+"��	 ��/ ���,;@/ � (���-������8�G�H I

Figure 6.2: Shortening the Channel Impulse Response (CIR) by a Time Domain Equalizer (TEQ).

6.2 Choosing the adaptive step size

As discussed by Widrow [34], under white noise input the fastest convergence will be
achieved for the Least Mean Square (LMS) algorithm by choosing the adaptive step size

µi =
1

L · σ2
ri

. (6.3)

In the case of the WSAF algorithm, we obtain:

µ · λi =
1

L · σ2
ri

. (6.4)

λi are the weighting factors used in order to speed up the convergence properties (→
appendix A), the constant factor µ may be used in order to obtain various tradeoffs between
convergence rate and residual error, L corresponds to the number of taps of the TEQ filter
and σ2

ri to the variance of the received signal. In fact, there are many LMS algorithms work-
ing separately in each sub-band.

During the learning sequence, always the same DMT symbol xn, n ∈ (0, 1, ..., N − 1)
is transmitted. Receiving rn = xn ∗ cn, we choose the weighting factors for each sub-band
separately:

µ · λi =
1

L · |xi
n · ci

n|2
. (6.5)

Here, we need an estimation ci
n of the ADSL channel in the frequency domain. Since no

guard interval is used during the learning sequence and always the same symbol is transmit-
ted, the received symbols are actually circularly convolved. In other words, we can interpret
the previous DMT symbol as guard interval of the latest DMT symbol.

MOTOROLA PROPRIETARY INFORMATION 51

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

Assuming the channel impulse response being shorter than one DMT symbol, it can be
easily calculated in the frequency domain:

ci
n =

ri
n

xi
n

. (6.6)

The first taps of the channel impulse response in the time domain cn = IFFT (ci
n) are

used in order to initialize the TIR filter.

6.3 The update algorithm for the filter taps

At first, we are going to introduce some definitions. They are similar to the ones used by de
Courville [10, 11].

• N is the number of samples per DMT symbol. At the same time, this is the number
of inputs to the FFT (if no guard interval is used, as it is the case during the learning
sequence).

• L is the number of taps of the Time Domain Equalization (TEQ) filter.

• P is the number of taps of the Target Impulse Response (TIR) filter.

• Rn = (rn, rn−1, ..., rn−N+1)
t contains the samples arriving at the receiver, i.e. the

transmitted samples convolved by the channel and disturbed by noise bn.

• Rn = (Rn, Rn−1, ..., Rn−L+1) contains the last L vectors of the arriving samples.

• Wn = (w0(n), w1(n), ..., wL−1(n))t contains the L TEQ filter coefficients.

• Xn = (xn, xn−1, ..., xn−N+1)
t contains the originally transmitted samples.

• Xn = (Xn, Xn−1, ..., Xn−P+1) contains the last P vectors of the transmitted sam-
ples.

• Gn = (g0(n), g1(n), ..., gP−1(n))t contains the P TIR filter coefficients.

• Xi
n = FN,i · Xn = (xi

n, xi
n−1, ..., x

i
n−P+1)

t contains the ith carrier of the transmitted
information in the frequency domain.

• Ri
n = FN,i · Rn = (ri

n, ri
n−1, ..., r

i
n−L+1)

t contains the ith carrier of the received
samples in the frequency domain.

• r(n) = (r0(n), r1(n), ..., rN−1(n))t = RnN contains the received samples.

• En = (en, en−1, ..., en−N+1)
t = X ·G−R·W contains the error between the trans-

mitted samples convolved by the channel and the TEQ and the transmitted samples
convolved by the TIR filter.

• Ei
n = (ei

n, ei
n−1, ..., e

i
n−N+1)

t = FN,i · EkN contains the ith carrier of the error in
the frequency domain.

52 MOTOROLA PROPRIETARY INFORMATION

6.3. THE UPDATE ALGORITHM FOR THE FILTER TAPS

• FN,i is the ith line of the matrix FN = 1√
N

·
(
W lk

N

)
performing the discrete fourier

transformation with W lk
N = e−j 2π

N
lk and 0 ≤ l ≤ N − 1, 0 ≤ k ≤ N − 1.

Note: In our representation, the last symbol appears as first entry in the correspond-
ing matrix (example: Rn = (rn, rn−1, ..., rn−N+1)

t, where rn was the last received
symbol and rn−N+1 the first received symbol in the vector). The usual FFT and
IFFT implementations, however, expect the order of the samples vice versa. This will
slightly influence the implementation presented in this chapter and will therefore be
discussed by section 2.4.

• FN×N
2

contains the first N
2 lines of FN .

• k is the latest iteration step number.

Now we are going to calculate the derivate ∂Ĵ
∂W ?

kN
of

Ĵ =

N
2
−1

∑

i=0

λi · |ei
k|2. (6.7)

We obtain

∂Ĵ

∂W ?
kN

= 2 ·
N
2
−1

∑

i=0

λi · ei
k

(
∂ei

k

∂WkN

)?

(6.8)

with

∂ei
k

∂WkN
=

∂

∂WkN
(FN,iXkNGkN − FN,iRkNWkN) (6.9)

= −FN,iRkN (6.10)

= −Ri
kN . (6.11)

This results in

∂Ĵ

∂W ?
kN

= −2 ·
N
2
−1

∑

i=0

λi · ei
k

(
Ri

kN

)?
. (6.12)

Here, it can be easily seen why only the N
2 first carriers are taken into account by the

criterion Ĵ . The reason lies in the fact that the ADSL standard [3] demands hermitian
symmetry in the frequency domain in order to create real time domain values, as it was
already discussed by chapter 6.1:

Zi = (ZN−i)
? , i =

N

2
+ 1, · · · , N − 1. (6.13)

MOTOROLA PROPRIETARY INFORMATION 53

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

Using all N carriers, there would be for each λi · ei
k, 1 ≤ i ≤ 255 a complex conjugate

of the same value among
(
λi · ei

k

)?
, 257 ≤ i ≤ 511. Likewise, for each Ri

kN , 1 ≤ i ≤ 255

there would be a complex conjugate of the same value among
(
Ri

kN

)?
, 257 ≤ i ≤ 511. So,

in reality 2 ·Re
{
λi · ei

k

(
Ri

kN

)?}
is minimized over i = 0 up to i = N

2 −1. It is sufficient to
take only half the spectrum into account. Then, the imaginary part of this result is truncated
and the remaining real part is multiplied with 2.

In the end, the tap update is

W(k+1)N = WkN − µ · ∆WkN (6.14)

= WkN − µ · 1

2

∂Ĵ

∂W ?
kN

(6.15)

= WkN + µ ·
N
2
−1

∑

i=0

λi · ei
k

(
Ri

kN

)?
(6.16)

= WkN + µ ·
(

FN×N
2

RkN

)H
ΛFN×N

2

EkN (6.17)

= WkN + µ · RH
kNFH

N×N
2

ΛFN×N
2

EkN (6.18)

with

Λ = Diag(λ0, λ1, ..., λN−1)
t. (6.19)

The most costly part in this structure is certainly the matrix multiplication with RH
kN .

But, this matrix is nearly I/J-circular. If we could make it I/J-circular, the multiplication
would correspond to a circular correlation. A circular correlation, however, can be per-
formed in the frequency domain using the FFT (→ de Courville [11]):

MI · V = FN

[√
N · F−1

N · (Column1 (MI))
]

�
[
F−1

N V
]

(6.20)

= F−1
N

[√
N · FN · (Column1 (MI))

]

� [FNV] , (6.21)

MJ · V = F−1
N

[√
N · FN · (Column1 (MJ))

]

�
[
F−1

N V
]

(6.22)

= FN

[√
N · F−1

N · (Column1 (MJ))
]

� [FNV] , (6.23)

with V being a vector of dimension N , MI being an I-circular matrix

MI =

m0 m1 · · · · · · mN−1

mN−1 ↘ ↘ ...
... ↘ ↘ ...

m1 · · · · · · mN−1 m0

, (6.24)

54 MOTOROLA PROPRIETARY INFORMATION

6.3. THE UPDATE ALGORITHM FOR THE FILTER TAPS

MJ being an J-circular matrix

MJ =

m0 m1 · · · · · · mN−1

m1 ↘ ↘ m0
... ↘ ↘ ...

mN−1 m0 · · · · · · mN−2

, (6.25)

and � denoting the product of Schur:

(xi)1≤i≤N � (yi)1≤i≤N = (xi · yi)1≤i≤N . (6.26)

So, we try to make the matrix RH
kN

RH
kN =

r0(n)
r1(n)

...
rN−1(n)

∣
∣
∣
∣
∣

r1(n)
r2(n)

...
r0(n − 1)

∣
∣
∣
∣
∣

...

∣
∣
∣
∣
∣

rL−1(n)
rL(n)

...
rL−2(n − 1)

H

(6.27)

circular. In fact, this is not very difficult. It is sufficient to add to every line the values
that are needed for circularity. In the end, we also have to add some lines in order to obtain
matrix of dimension 2N ×2N . In fact, a matrix of the size (N +L)× (N +L) for updating
the TEQ would be sufficient. But, that size wouldn’t be very practical, since we have to
perform a FFT just of that size. We choose a size of two times the old FFT size which is
realistic for an implementation.

(6.30) presents RkN enlarged by some columns and some lines. In the end, the new
matrix R2N×2N,H

kN is J-circular. In order to perform the multiplication

R2N×2N,H
kN ·

(

FH
N×N

2

ΛFN×N
2

EkN

)

, (6.28)

the vector

(

FH
N×N

2

ΛFN×N
2

EkN

)

must be enlarged by N − L + 1 zeros. In the end,

we are performing the multiplication

R2N×2N,H
kN ·

(

FH
N×N

2

ΛFN×N
2

EkN

)t
,

N−L+1 zeros
︷ ︸︸ ︷

0, 0, · · · , 0

t

. (6.29)

It is obvious that only the first L entries of the resulting vector are part of the result. The
rest is truncated.

MOTOROLA PROPRIETARY INFORMATION 55

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

6.3.1 A proposition for a practical implementation

Fig.6.3 presents the corresponding structure. Practical issues concerning the implementa-
tion are discussed in appendix B.

56 MOTOROLA PROPRIETARY INFORMATION

R
2N×2N,H

kN =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

r0(n)
r1(n)

...
rN−1(n)

r0(n − 1)
r1(n − 1)

...

...

rN−1(n − 1)

r1(n)
r2(n)

...
r0(n − 1)

r1(n − 1)
r2(n − 1)

...

...

r0(n)

· · ·

...

...

...

rL−1(n)
rL(n)

...
rL−2(n − 1)

...

...

rL−2(n)

rL(n)

...

...

...

rL−1(n)

· · ·

...

...

...

· · ·

rN−1(n)

...

...

...

rN−2(n)

r0(n − 1)

...

...

...

rN−1(n)

· · ·

...

...

...

· · ·

rL−2(n − 1)

...

...

...

rL−3(n − 1)

rL−1(n − 1)

...

...

...

rL−2(n − 1)

· · ·

...

...

...

· · ·

rN−1(n − 1)
r0(n)

...

...

...

rN−2(n − 1)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

H

(6.30)

C
H

A
PT

E
R

6.
A

N
E

W
A

L
G

O
R

IT
H

M
U

PD
A

T
IN

G
T

H
E

T
IM

E
D

O
M

A
IN

E
Q

U
A

L
IZ

E
R

�����
�����

� �����
� �����

�����
�����

�����

� �����

� �����

�����
�����

�

�

�� �	 	
 ���
�

��

� ��
� ��

� �
��

�� � �� ��

�� �
 � � �� �

�� �
 � � ! �"�
�

$�

�� %�

&�

'(')* +, -. / 0�

'1
'

�

	
2 � �� # �

34 5 6 4 78 4 9 :4 7; 4

<=> ?@ AB C A DFE ? G AB H + IJ +

<=> ?@ AB C A DFE ? G AB K + I L +

MN N A N @ = D@ E D = ? G AB

M N N A N O P GQ R ? G B Q G B? R P SN PTVU W AX = G B

<= > ?@ A N N P D = ? G AB Y Z\[] ^ _ []

`ab 	 � � ` c � 	

`ab 	 � � ` c � 	

`a b 	 � � ` c � 	

<= > ?@ = D@ E D = ? G AB

J d + e K d + ^ L d + f H d +

J + g h + I L +

G B ? R P SN PT E PB @ i W AX = G B

j

$ % � + �
$ �� � � +k ��

$ % � +k ��$ �� � � + �

Figure
6.3:

T
he

optim
alstructure

for
the

tap
update.

58
M

O
T

O
R

O
L

A
P

R
O

P
R

IE
T

A
R

Y
IN

F
O

R
M

A
T

IO
N

6.4. COMPLEXITY EVALUATION

6.4 Complexity evaluation

6.4.1 The complexity of basic operations

The complexity of the operations used is expressed by the number of real multiplications
(µR) and real additions (αR) necessary in order to perform the calculation. Tab.6.1 presents
the complexity of basic complex operations in µR and αR (→ Ifeachor [16], de Courville
[10]).

Operations Abbreviation R multiplications R additions

real multiplication µR 1 –
real addition αR – 1

complex modulus modC 2 1
complex multiplication µC 3 3

complex addition αC – 2
real × complex multiplication µRC 2 –

complex N -points FFT DFTC(N) → section 6.4.2 → section 6.4.2
conv./corr. in time domain CTIME

C
(N) → section 6.4.3 → section 6.4.3

fast conv./corr. CFAST
TC

(N) → section 6.4.3 → section 6.4.3
fast conv./corr. without CFAST

FC
(N) → section 6.4.3 → section 6.4.3

transformation back into
time domain

Table 6.1: The complexity of basic operations.

6.4.2 The complexity of Fast Fourier Transformation (FFT) algorithms

Tab.6.2 presents the complexity of different FFT algorithms. Wherever possible, we use the
radix-4 FFT (N must be a number that can be expressed expressed as N = 4x, x ∈ N

+).
The split-radix offers the lightest load whereas the radix-4 is more power consuming; the
radix-2 comes last. On the other hand, however efficient the split-radix algorithm is, its
memory access requirements are greater than for radix-4 (→ Duhamel [12]).

FFT type R multiplications R additions RAM access

radix-2 3·N
2 · log2(N) − 5 · N + 8 7·N

2 · log2(N) − 5 · N + 8 4 · N · log2(N)

radix-4 9·N
8 · log2(N) − 43

12 · N + 16
3

25·N
8 · log2(N) − 43

12 · N + 16
3 2 · N · log2(N)

split-radix N · log2(N) − 3 · N + 4 3 · N · log2(N) − 3 · N + 4 3 · N · log2(N)

Table 6.2: The complexity of FFT operations.

In most cases, we will need a FFT for N = 2·512 = 1024 points. But, for the weighting
of the calculated error

(
ei
n

)
in the frequency domain, a FFT with N = 512 points is also

required. In order to perform a 512-points FFT, the literature (→ Duhamel [12]) proposes a
solution using a combination of two radix-4 FFTs (256 points each) and radix-2 butterflies
(512 points) as presented by Fig.6.4. This solution is more efficient than a pure radix-2
implementation.

MOTOROLA PROPRIETARY INFORMATION 59

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

� �������	�

 ���������������� ����

(5
12

 in
pu

ts
-5

12
 o

ut
pu

ts
)

ra
di

x-
2

D
IF

 b
ut

te
rf

lie
s

256 points FFT

256 points FFT

(radix-4 DIF)

(radix-4 DIF)

Figure 6.4: A radix-2 butterfly and an efficient solution for a FFT of 512 points.

The complexity of the proposed 512-points FFT and 1024-points FFT is presented by
Tab.6.3. The radix-2-DIF (Decimation in Frequency) butterflies (512 points) for the 512-
points FFT require 512 additions αR (since there are real time domain values in our case),
252 multiplications µRC and 4 multiplications µR.

FFT size FFT type R multiplications R additions

512 points radix-2 butterflies combined 3292 11488
with two radix-4 FFTs (256 points)

1024 points radix-4 7856 28336

Table 6.3: The complexity of FFT operations.

The complexity of the inverse fast fourier transformation (IFFT) corresponds to the one
of the FFT. Therefore, it won’t be taken into consideration separately.

6.4.3 The complexity of convolution and correlation algorithms

The convolution/correlation operation can be performed in the time domain and in the fre-
quency domain. In the case of a FIR-filter with L filter taps, the time domain solution uses
L − 1 Buffers. For each entering value, L multiplications µR and L − 1 additions αR are
necessary (in the case of real time domain data and real filter coefficients).

The frequency domain solution requires a transformation of the L filter coefficients
and of the entering data (N > L values) into frequency domain, where the convolu-
tion/correlation is performed by simple multiplications µC of the different coefficients. Af-
terwards, the frequency domain data must be transformed back into time domain. Naturally,
the first L− 1 values of the fast convolution/correlation result are incorrect, since we have a
circular convolution. This problem can be easily resolved. Instead of convolving/correlating
the last N received values, we convolve/correlate the last N + L − 1 values. Additionally,
we add zeros to the vector of the filter coefficients and to the vector of the received values.
Now, 2N -points FFTs are used and the L − 1 first values of the convolution/correlation
result are truncated. The rest is the result of a linear convolution/correlation (N >> L).

60 MOTOROLA PROPRIETARY INFORMATION

6.4. COMPLEXITY EVALUATION

The operations to be performed for the convolution/correlation operation is resumed by
Tab.6.4, the complexity is presented by Tab.6.5. Hereby, hermitian symmetry in the fre-
quency domain is already taken into account. That’s why the multiplication operations in
the frequency domain are only performed for half the carriers. The other half of the carriers
Zi, i ∈ (N

2 +1, ..., N−1) can be easily determined by Zi = (ZN−i)
∗ , i ∈ (N

2 +1, ..., N−1)
(→ ADSL standard [3]).

Operation Abbreviation Operations to be performed

conv./corr. in time domain CTIME
C

(N) N · L × real multiplication µR

N · (L − 1) × real addition αR

fast conv./corr. CFAST
TC

(N) 3 × DFTC(2N)
2N
2 × complex multiplication µC

fast conv./corr. without CFAST
FC

(N) 2 × DFTC(2N)

transformation back into 2N
2 × complex multiplication µC

time domain

Table 6.4: Operations to be performed for the convolution/correlation.

Operations Abbreviation R multiplications R additions

conv./corr. in time domain CTIME
C

(N) N · L N · (L − 1)

fast conv./corr. (N=512, L<512) CFAST
TC

(N) 25104 86544
fast conv./corr. without CFAST

FC
(N) 17248 58208

transformation back into
time domain (N=512, L<512)

Table 6.5: Operations to be performed for the convolution/correlation (with N = 512
carriers and hermitian symmetry in the frequency domain).

The length of the TIR filter is L = 32 taps in ADSL, which corresponds to the length of
the guard interval. Depending on the algorithm, WSAF or Block LMS (BLMS), the length
of the TEQ algorithm will be either L=64 taps (minimum for WSAF, as it will be shown by
simulations) or L=16 taps as proposed by Chen [4] for the LMS/BLMS.

6.4.4 The complexity of the tap update calculation

After having calculated the output data in the time domain of the TIR and TEQ filters,
the calculation of the tap update ∆Wn is performed. Tab.6.6 indicates the operations to be
performed for the block LMS (BLMS) algorithm performing all convolutions/correlations in
the frequency domain. The operations to be performed for the BLMS algorithm using linear
convolutions/correlations in the time domain is presented by Tab.6.7 and for the WSAF
algorithm performing all convolutions/correlations in the frequency domain by Tab.6.8.

Tab.6.9 and Tab.6.10 resume the complexity of the different algorithms. In this table,
the guard interval is fixed to K = 32, the length of one DMT symbol to N = 512 and the
length of the channel impulse response to Pc = N

2 = 256.

MOTOROLA PROPRIETARY INFORMATION 61

C
H

A
PT

E
R

6.
A

N
E

W
A

L
G

O
R

IT
H

M
U

PD
A

T
IN

G
T

H
E

T
IM

E
D

O
M

A
IN

E
Q

U
A

L
IZ

E
R

Operation Steps to be performed Calculation complexity

Fast convolution of received data with TEQ
(
yi

n

)

2N
= FFT

(
rn−N

rn

)

� FFT

(
wn

02N−L

)

2 × DFTC(2N)

(the multiplications are performed only for N × µC

half the spectrum due to hermitian symmetry)

Fast convolution of original data with TIR
(
di

n

)

2N
=

(
xi

n

)

2N
� FFT

(
gn

02N−P

)

DFTC(2N)

(original data are always the same, they must N × µC

only once be transformed into frequency domain,
therefore it isn’t counted here)

Error calculation in the frequency domain
(
ei
n

)

2N
=

(
di

n

)

2N
−

(
yi

n

)

2N
N × αC

Transformation of
(
ei
n

)

2N
back into time IFFT(ei

n)2N DFTC(2N)

domain (since an overlapping is necessary
for the convolution, a windowing must be

performed in time domain)

Fast correlation (with transformation
back into time domain)

IFFT

FFT
(

column1

(

R2N×2N,H
kN

))

︸ ︷︷ ︸

= FFT

(
rn−N

rn

)

,→ read

explication in this parapgraph

�FFT

(
en

0N

)

CFAST
FC

(N)

Multiplication of the first L values µ · (result of fast correlation) L × µR

of the correlation result with µ

Filter update in the time domain wn+1 = wn + ∆wn L × αR

Calculation of (CIR ∗ TEQ) in the frequency domain IFFT
((

yi
n

)

2N
�

(
1

xi
n

)

2N

)

N × µC

((
ri
n

)

2N
�

(
wi

n

)

2N
=FFT

(
rn−N

rn

)

� FFT

(
wn

02N−L

)

DFTC(2N)

was already calculated before
)

and transformation

back into time domain for the TIR-update

Table 6.6: The operations for the block LMS (BLMS) algorithm using fast convolutions/correlations.

62
M

O
T

O
R

O
L

A
P

R
O

P
R

IE
T

A
R

Y
IN

F
O

R
M

A
T

IO
N

6.4.
C

O
M

PL
E

X
IT

Y
E

V
A

L
U

A
T

IO
N

Operation Steps to be performed Calculation complexity

Convolution of received data with TEQ yn = rn ∗ wn N · L × µR

(L = Number of TEQ filter taps) N · (L − 1) × αR

Convolution of original data with TIR dn = xn ∗ gn N · K × µR

(K = Number of TIR filter taps) N · (K − 1) × αR

Error calculation in the time domain en = dn − yn N × αR

Correlation R2N×2N,H
kN · EkN N · L × µR

N · (L − 1) × αR

Multiplication of the correlation µ · (result of correlation) L × µR

result with µ

Filter update in the time domain wn+1 = wn + ∆wn L × αR

Calculation of (CIR ∗ TEQ) in the time cn ∗ wn Pc · L × µR

domain (Pc = length of the channel impulse Pc · (L − 1) × αR

response cn, usually Pc ≈ N
2)

Table 6.7: The operations for the block LMS (BLMS) algorithm using linear convolutions/correlations in the time domain.

M
O

T
O

R
O

L
A

P
R

O
P

R
IE

T
A

R
Y

IN
F

O
R

M
A

T
IO

N
63

C
H

A
PT

E
R

6.
A

N
E

W
A

L
G

O
R

IT
H

M
U

PD
A

T
IN

G
T

H
E

T
IM

E
D

O
M

A
IN

E
Q

U
A

L
IZ

E
R

Operation Steps to be performed Calculation complexity

Fast convolution of received data with TEQ
(
yi

n

)

2N
= FFT

(
rn−N

rn

)

� FFT

(
wn

02N−L

)

2 × DFTC(2N)

N × µC

Fast convolution of original data with TIR
(
di

n

)

2N
=

(
xi

n

)

2N
� FFT

(
gn

02N−P

)

DFTC(2N)

N × µC

Error calculation in the frequency domain
(
ei
n

)

2N
=

(
di

n

)

2N
−

(
yi

n

)

2N
N × αC

Transformation of
(
ei
n

)

2N
back into time IFFT(ei

n)2N DFTC(2N)

domain (since an overlapping is necessary
for the convolution, a windowing must be

performed in time domain)
Weighting of en in the frequency domain ên = IFFT(Λ · FFT (en)N) 2 × DFTC(N)

and transformation back into time domain N
2 × µRC

Fast correlation (with transformation
back into time domain)

IFFT

FFT
(

column1

(

R2N×2N,H
kN

))

︸ ︷︷ ︸

= FFT

(
rn−N

rn

)

,→ read

explication in this parapgraph

�FFT

(
ên

0N

)

CFAST
FC

(N)

Multiplication of the first L values µ · (result of fast correlation) L × µR

of the correlation result with µ

Filter update in the time domain wn+1 = wn + ∆wn L × αR

Calculation of (CIR ∗ TEQ) in the frequency domain IFFT
((

yi
n

)

2N
�

(
1

xi
n

)

2N

)

N × µC

((
ri
n

)

2N
�

(
wi

n

)

2N
=FFT

(
rn−N

rn

)

� FFT

(
wn

02N−L

)

DFTC(2N)

was already calculated before
)

and transformation

back into time domain for the TIR-update

Table 6.8: The operations for the WSAF algorithm using fast convolutions/correlations.

64
M

O
T

O
R

O
L

A
P

R
O

P
R

IE
T

A
R

Y
IN

F
O

R
M

A
T

IO
N

6.4.
C

O
M

PL
E

X
IT

Y
E

V
A

L
U

A
T

IO
N

Algorithm Calculation Complexity R multiplications R additions

LMS (performing convolutions/ (2NL + NK + L + PL) × µR 36880 35088
correlations in time domain) (2N(L − 1) + N(K − 1) + L + P (L − 1)) × αR

L = 16 filter taps
LMS (performing convolutions/ (2NL + NK + L + PL) × µR 98368 96576

correlations in time domain) (2N(L − 1) + N(K − 1) + L + P (L − 1)) × αR

L = 64 filter taps
LMS (fast convolution/ 7 × DFTC(2N), 4N × µC 61152 205536

correlation) L × αR, L × µR

L = 16 filter taps N × αC

LMS (fast convolution/ 7 × DFTC(2N), 4N × µC 61200 204688
correlation) L × αR, L × µR

L = 64 filter taps N × αC

WSAF (fast convolution/ 7 × DFTC(2N), 2 × DFTC(N), 68296 228560
correlation) 4N × µC , L × αR,

L = 64 filter taps L × µR, N × αC, N
2 × µRC

Table 6.9: The complexity of the different filter update algorithms.

M
O

T
O

R
O

L
A

P
R

O
P

R
IE

T
A

R
Y

IN
F

O
R

M
A

T
IO

N
65

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

Algorithm R multiplications R additions
(normalized by 36880) (normalized by 35088)

LMS (performing convolutions/
correlations in time domain) 1 1

L = 16 filter taps
LMS (performing convolutions/

correlations in time domain) 2.667 2.752
L = 64 filter taps

LMS (fast convolution/
correlation) 1.658 5.857

L = 16 filter taps
LMS (fast convolution/

correlation) 1.659 5.834
L = 64 filter taps

WSAF (fast convolution/
correlation) 1.851 6.513

L = 64 filter taps

Table 6.10: The complexity of the different filter update algorithms normalized by
the number of multiplications/additions of the LMS algorithm (performing convolu-
tions/correlations in time domain, L = 16 filter taps).

Now, we are going to explain what has to be considered concerning the reuse of

FFT
(

column1

(

R2N×2N,H
kN

))

(6.31)

for the calculation of

(
yi

n

)

2N
= FFT

(
r×

)
� FFT

(
wn

02N−L

)

. (6.32)

There are different constraints placed upon the shape of (r×)2N and column1

(

R2N×2N,H
kN

)

.

We have to take 2N time-domain samples for the FFT calculating
(
yi

n

)

2N
. Here, the

consideration of the last N + L arriving samples rn would be sufficient in order to perform
the convolution rn ∗ wn in the frequency domain, since the TEQ filter has only L taps. The
remaining samples could be filled up with zeros:

(r×)2N = (rN−L(n − 1), · · · , rN−1(n − 1), r0(n), · · · , rN−1(n), 0, · · · , 0)t . (6.33)

66 MOTOROLA PROPRIETARY INFORMATION

6.4. COMPLEXITY EVALUATION

We note by the way that it wouldn’t be more costly to take instead of the additional ze-
ros altogether the 2N last arriving samples at the input of the FFT. In this case, the desired
result cn ∗ wn can be obtained as well.

In the case of column1

(

R2N×2N,H
kN

)

, we could also add some zeros in order to create a

J-circular matrix. In this case, the first column of column1

(

R2N×2N,H
kN

)

would look like

(r0(n), r1(n), · · · , rN−1(n), r0(n − 1), · · · , rL−2(n − 1), 0, · · · , 0)t . (6.34)

As an alternative, the remaining values of r(n−1) instead of the zeros can be used. The
result will rest the same.

Now, we have some constraints and some liberties upon the two expression. We will
use the liberties in order to find an expression corresponding to the constraints of both. In
fact, this isn’t very difficult. The transformation of the vector

(r0(n), r1(n), · · · , rN−1(n), r0(n − 1), · · · , rN−1(n − 1))t . (6.35)

in the frequency domain may be used for both, for the calculation of
(
yi

n

)

2N
and for

performing the correlation with column1

(

R2N×2N,H
kN

)

using the properties of a circular

convolution/correlation.

6.4.5 The complexity of the Time Domain Equalization (TEQ) convolution

The complexity of the Time Domain Equalization (TEQ) convolution (rn ∗wn) is even more
important than the complexity of the tap update algorithm, since the tap update is only per-
formed during the learning sequence. The convolution rn ∗ wn, however, must always be
performed for every arriving symbol.

Here, two possibilities for implementing the TEQ convolution are considered: A fast
implementation using the overlap-add algorithm (→ Ifeachor [16]) and an implementation
where the convolution is performed in the time domain using L − 1 Buffers for L TEQ
filter taps. Tab.6.11 presents the complexity of the different implementations. For the fast
convolutions, we consider two solution, one using a N -points FFT and one using a 2N -
points FFT, since these two FFTs are already used by the WSAF update algorithm. The fast
algorithms require two FFTs, one for calculating the arriving data in the frequency domain
(
ri
n

)
and one for re-transforming the convolved data into time domain. After the tap update,

the TEQ filter doesn’t change any more. Therefore, the filter coefficients must only once be
transformed into frequency domain.

MOTOROLA PROPRIETARY INFORMATION 67

CHAPTER 6. A NEW ALGORITHM UPDATING THE TIME DOMAIN EQUALIZER

Algorithm Calculation Complexity Number of filtered
samples

convolution in the time domain N · L × µR, N · (L − 1) × αR N
fast convolution 2·DFTC(N), N

2 × µC, N-L+1
(using a N -points FFT) L × αR (for overlap-add)

fast convolution 2·DFTC(2N), 2N
2 × µC, 2N-L+1

(using a 2N -points FFT) L × αR (for overlap-add)

Table 6.11: The complexity of the different convolution algorithms.

The number of operations for the case of an ADSL system with N = 512 and L = 64
or L = 16 are presented by Tab.6.12.

Hereby, it has to be considered that only N − L + 1 values can be used per FFT (N)
operation. This is the case, since we need the results of a linear convolution/correlation
in order to apply the overlap add algorithm. Therefore, the number of filtered samples per
block is mentioned in the column Number of filtered samples (→ Tab.6.11).

Algorithm R multiplications R additions
per arriving sample per arriving sample

convolution in the time domain, L = 16 16 15
convolution in the time domain, L = 64 64 63

fast convolution, L = 16 14.8 47.8
(using a N -points FFT)
fast convolution, L = 64 16.5 53.0
(using a N -points FFT)
fast convolution, L = 16 17.1 57.7
(using a 2N -points FFT)
fast convolution, L = 64 18 60.6
(using a 2N -points FFT)

Table 6.12: The complexity of the different convolution algorithms (ADSL).

The most important point is that the number of real multiplications is practically the
same for the 16-taps time-domain convolution algorithm and all fast convolution algorithms,
even for 64-taps cases. By switching from a 16-taps TEQ filter to a 64-taps filter, only the
number of real additions to be performed rises. However, real additions are much less
complex than multiplications. In the end, the higher complexity of a 64-taps TEQ filter will
still be acceptable.

68 MOTOROLA PROPRIETARY INFORMATION

Chapter 7

Simulation results

This chapter presents simulation results obtained with the algorithm described in chapter 6.
The convergence speed is compared to the one of a simple LMS algorithm, once without
noise and once with Additive White Gaussian Noise (AWGN). Moreover, the resulting TEQ
filter taps and the resulting impulse response cn ∗wn is presented. The remaining energy of
the resulting impulse response after the guard interval cn ∗ wn|after GI is calculated.

7.1 Parameters of the simulation

The channel is an important parameter of a simulation. We use a real channel impulse
response corresponding to the CSA-Loop #6 scenario (9 kfeet length, 26 American Wire
Gauge (AWG)), as it is defined by the ADSL standard [3]. It is presented by Fig.7.1.

0 20 40 60 80 100 120
0

1

2

3

4

5
x 10

−3

taps

am
pl

itu
de

CIR (CSA−Loop #6)

0 50 100 150 200 250
−80

−70

−60

−50

−40

−30

−20

taps

A
tte

nu
at

io
n

in
 d

B

CIR in the frequency domain (0..1.1 MHz)

Figure 7.1: The channel impulse response (CIR) corresponding to CSA-Loop #6 in the time and
frequency domain.

Each DMT symbol is loaded with the C-REVERB1 symbol during the equalizer train-
ing, as defined by the ADSL standard [3], chapter 12.4.4 and 12.4.8. The C-REVERB1
symbol uses a pseudo-random data pattern modulated on the carriers by a 4-QAM signal
constellation (constellations {+,+}, {+,−}, {−,+} and {−,−}).

MOTOROLA PROPRIETARY INFORMATION 69

CHAPTER 7. SIMULATION RESULTS

A very important topic is the choice of the number of filter taps to be used for the TEQ
filter. It may not be obvious at a first glance, but the WSAF algorithm will require a greater
number of filter taps than the LMS algorithm. We can understand this fact by calculating
the filter update in the frequency domain using (6.18):

W i
(k+1)N = W i

kN + µ · λi ·
(
Ri

kN

)? · ei
k. (7.1)

Without weighting the different
(
Ri

kN

)?
, W i

(k+1)N won’t change very much for high
frequencies, since the attenuation of the channel is extremely high for them. There are only
some values changing in the lower frequency band. In the end, a small number of degrees
of freedom will be sufficient in order to fulfill the 512 equations for i = 0, ..., 511 approx-
imately, i.e. a small number of filter taps may be used. Using the WSAF algorithm, all
(
Ri

kN

)?
have an important influence. So, updating a filter with a small number of taps will

result in anything but a reasonable TEQ. The following simulations will demonstrate this
behaviour.

We are performing the first iteration of the filter update with a 128 taps filter and a
16 taps filter with and without using a weighted criterion. The TEQ filter is initialized
as indicated by Tab.7.1. The corresponding frequency domain properties are presented by
Fig.7.2, it’s just a constant value over all frequencies.

n wn

0 0.5
2...31 0

Table 7.1: Initialization of the TEQ filter taps.

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

sample number

A
m

pl
itu

de

Starting scenario of the TEQ filter

Figure 7.2: The initialization of the TEQ filter in the frequency domain.

70 MOTOROLA PROPRIETARY INFORMATION

7.1. PARAMETERS OF THE SIMULATION

Using a weighted criterion (WSAF algorithm), the resulting TEQ filter after the first
iteration for 128 and 16 filter taps is presented by Fig.7.3. It can clearly be seen that the
16-taps filter (dotted line) has lost quite a lot compared to the 128-taps filter (solid line).

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

sample number

A
m

pl
itu

de

128 and 16 taps TEQ filter (WSAF)

16-taps filter (WSAF)

128-taps filter (WSAF)

Figure 7.3: The TEQ filter after one iteration for 128 and 16 filter taps using the WSAF algorithm.

Without a weighted criterion, the results are quite different as it is demonstrated by
Fig.7.4. The 16-taps filter (dotted line) is still similar to the 128-taps filter (solid line) and
the result will therefore be satisfying.

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

sample number

A
m

pl
itu

de

128 and 16 taps TEQ filter (non−weighted)

16-taps filter (BLMS)

128-taps filter (BLMS)

Figure 7.4: The TEQ filter after one iteration for 128 and 16 filter taps without a weighted criterion.

It is obvious that the LMS algorithm works better than the WSAF for a small number
of filter taps, since quite some information is not used

((
Ri

kN

)? ≈ 0 for high frequencies
)
.

Using the WSAF algorithm, all
(
Ri

kN

)?
are taken into account. Therefore, more degrees of

freedom, i.e. more filter taps are required.

MOTOROLA PROPRIETARY INFORMATION 71

CHAPTER 7. SIMULATION RESULTS

7.2 Convergence properties without noise

Fig.7.5 and Fig.7.6 present the simulation results for an environment without noise.

0 10 20 30 40 50
−70

−60

−50

−40

−30

−20

−10

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update without noise

non−weighted (16 taps)

WSAF (64 taps)

Figure 7.5: The convergence properties without noise, non-weighted (16 filter taps) and WSAF (64
filter taps).

0 20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update without noise

WSAF (64 taps)

non−weighted (64 taps)

0 200 400 600 800 1000
−70

−60

−50

−40

−30

−20

−10

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update without noise

WSAF (64 taps)

non−weighted (64 taps)

Figure 7.6: The convergence properties without noise, 64 filter taps for the non-weighted case and
the WSAF (zoomed and over 1000 iterations).

The TEQ filter taps were initialized with the values presented by Tab.7.2.

n wn

0 0.5
2...31 0

Table 7.2: Initialization of the TEQ filter taps.

The simulations clearly reveal that during the first iterations the two algorithms converge
with approximately the same speed. Then, the new WSAF algorithm converges rapidly. The
classic LMS algorithm, however, converges after a large number of iterations.

72 MOTOROLA PROPRIETARY INFORMATION

7.3. CONVERGENCE PROPERTIES WITH ADDITIVE WHITE GAUSSIAN NOISE

7.3 Convergence properties with Additive White Gaussian Noise

Fig.7.7, Fig.7.8 and Fig.7.9 present the simulation results in an Additive White Gaussian
Noise (AWGN) environment with a Signal-to-Noise Ratio (SNR) of 30dB, 40dB and 50dB
respectively. The error presented here, is the error Ĵ estimated at the reception site. The
true error J cannot be calculated, since the exact channel impulse response is not known at
the reception site.

0 100 200 300 400 500
−70

−60

−50

−40

−30

−20
N

on
−

w
ei

gh
te

d
er

ro
r

in
 d

B

Number of iterations

TEQ update with AWGN, SNR=30dB

WSAF (64 taps)

non−weighted (64 taps)

0 100 200 300 400 500

−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=30dB

WSAF (64 taps)

non−weighted (16 taps)

Figure 7.7: The convergence properties with SNR=30dB.

0 100 200 300 400 500
−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=40dB

WSAF (64 taps)

non−weighted (64 taps)

0 100 200 300 400 500

−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=40dB

WSAF (64 taps)

non−weighted (16 taps)

Figure 7.8: The convergence properties with SNR=40dB.

0 100 200 300 400 500
−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=50dB

WSAF (64 taps)

non−weighted (64 taps)

0 100 200 300 400 500

−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=50dB

WSAF (64 taps)

non−weighted (16 taps)

Figure 7.9: The convergence properties with SNR=50dB.

MOTOROLA PROPRIETARY INFORMATION 73

CHAPTER 7. SIMULATION RESULTS

Fig.7.10, Fig.7.11 and Fig.7.12 present a zoom of the simulation results.

0 10 20 30 40 50 60
−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=30dB

WSAF (64 taps)

non−weighted (64 taps)

0 10 20 30 40 50 60

−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=30dB

WSAF (64 taps)

non−weighted (16 taps)

Figure 7.10: The convergence properties with SNR=30dB (zoomed).

0 10 20 30 40 50 60
−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=40dB

WSAF (64 taps)

non−weighted (64 taps)

0 10 20 30 40 50 60

−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=40dB

WSAF (64 taps)

non−weighted (16 taps)

Figure 7.11: The convergence properties with SNR=40dB (zoomed).

0 10 20 30 40 50 60
−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=50dB

WSAF (64 taps)

non−weighted (64 taps)

0 10 20 30 40 50 60

−70

−60

−50

−40

−30

−20

N
on

−
w

ei
gh

te
d

er
ro

r
in

 d
B

Number of iterations

TEQ update with AWGN, SNR=50dB

WSAF (64 taps)

non−weighted (16 taps)

Figure 7.12: The convergence properties with SNR=50dB (zoomed).

74 MOTOROLA PROPRIETARY INFORMATION

7.3. CONVERGENCE PROPERTIES WITH ADDITIVE WHITE GAUSSIAN NOISE

As we mentioned before, only an estimated error can be calculated at the reception
site, since the true channel impulse response is not known and there is noise added. These
estimated errors were presented by Fig.7.7, Fig.7.8, Fig.7.9 and in a zoomed version by
Fig.7.10, Fig.7.11, Fig.7.12. It is interesting to compare the estimated error Ĵ with the true
error J as it is presented by Fig.7.13, Fig.7.14 and Fig.7.15 (Reminder: The error presented
by Fig.7.7, Fig.7.8, Fig.7.9, Fig.7.10, Fig.7.11 and Fig.7.12 is the error Ĵ estimated at the
reception site. The true error J presented by Fig.7.13, Fig.7.14 and Fig.7.15 normally
cannot be calculated, since the exact channel impulse response is not known at the reception
site). In order to visualize the instability of the non-weighted 16-taps filter, a linear scale is
used.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

WSAF (64 taps)

non−weighted (64 taps)

non−weighted (16 taps)

Number of iterations

A
m

pl
itu

de

Energy/total Energy after GI

Figure 7.13: The true error during the optimization with SNR=30dB.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

WSAF (64 taps)

non−weighted (64 taps)

non−weighted (16 taps)

Number of iterations

A
m

pl
itu

de

Energy/En. tot. after GI, SNR=40dB

Figure 7.14: The true error during the optimization with SNR=40dB.

MOTOROLA PROPRIETARY INFORMATION 75

CHAPTER 7. SIMULATION RESULTS

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

WSAF (64 taps)

non−weighted (64 taps)

non−weighted (16 taps)

Number of iterations
A

m
pl

itu
de

Energy/En. tot. after GI, SNR=50dB

Figure 7.15: The true error during the optimization with SNR=50dB.

In the case of the 16-taps filter, the algorithm doesn’t converge at the lowest true error
found. The unprecise choice of the TIR filter after each iteration step is responsible for
that behaviour. If we could always choose the exact value (the 32 first taps of CIR ∗ TEQ)
knowing the exact CIR, the algorithm would converge at a level near to the one of the 64-
taps filter. Here, the update procedure is much more sensitive to unprecise values than the
one using the WSAF algorithm in order to update a 64-taps filter.

7.4 The resulting TEQ filters

The most interesting result is the portion of energy remaining after the guard interval (32
taps) of the resulting impulse response wn ∗ cn, the shape of wn ∗ cn itself and the shape of
the TEQ filter impulse response. Fig.7.16 presents the shape of these two impulse responses
for a simulation without noise using a weighted criterion.

20 40 60 80 100
−2

−1

0

1

2

3

4
x 10

−3

taps

A
m

pl
itu

de

CIR convolved with TEQ, no noise

10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

1

taps

A
m

pl
itu

de

TEQ filter taps, no noise

Figure 7.16: The resulting impulse response wn ∗ cn and the one of the TEQ filter (no noise) using a
weighted criterion.

In the case of the 64-taps filter, the remaining Energy after the guard interval
total Energy after the guard

interval is so small
(

Energy after the guard interval
total Energy ≈ 10−6...10−3

)

that the inter-symbol interfer-

ence between two OFDM/DMT symbols using a guard interval of 32 taps will be nearly
negligible.

76 MOTOROLA PROPRIETARY INFORMATION

7.4. THE RESULTING TEQ FILTERS

Tab.7.3 presents some interesting values of achieved Energy after the guard interval
total Energy (these are

true errors, the error calculation is based on the true channel) and the corresponding number
of iterations that was necessary in order to train the TEQ filter.

Simulation Energy after guard interval (32 taps)
Total energy

Energy after guard interval (32 taps)
Total energy

(WSAF) (no weighting)

No TEQ filter 0.11194 0.11194
16 taps TEQ, no noise no convergence 4.979 · 10−6

(channel known) (≈ 25 iterations)
64 taps TEQ, no noise 5.1043 · 10−6 2.397 · 10−6

(channel known) (≈ 10 iterations) (≈ 600 iterations)

16 taps TEQ, SNR=50dB no convergence 1.9738 · 10−3

(channel estimated) (≈ 60 iterations)
16 taps TEQ, SNR=50dB no convergence 3.8971 · 10−5

(channel estimated) (≈ 350 iterations)
64 taps TEQ, SNR=50dB 3.9014 · 10−6 1.92213 · 10−5

(channel estimated) (≈ 60 iterations) (≈ 350 iterations)
1.0954 · 10−3

(60 iterations)

16 taps TEQ, SNR=40dB no convergence 2.0874 · 10−3

(channel estimated) (≈ 60 iterations)
16 taps TEQ, SNR=40dB no convergence 3.7508 · 10−5

(channel estimated) (≈ 350 iterations)
64 taps TEQ, SNR=40dB 2.2184 · 10−5 1.9672 · 10−6

(channel estimated) (≈ 60 iterations) (≈ 350 iterations)
1.1106 · 10−3

(60 iterations)

16 taps TEQ, SNR=30dB no convergence 1.9841 · 10−3)
(≈ 60 iterations)

16 taps TEQ, SNR=30dB no convergence 3.2484 · 10−5)
(channel estimated) (≈ 350 iterations)

64 taps TEQ, SNR=30dB 5.2470 · 10−5 2.0372 · 10−5

(channel estimated) (≈ 60 iterations) (≈ 350 iterations)
1.0642 · 10−3

(60 iterations)

Table 7.3: The portion of the remaining energy of wn ∗ cn after the guard interval.

MOTOROLA PROPRIETARY INFORMATION 77

CHAPTER 7. SIMULATION RESULTS

Tab.7.4 presents the approximate number of iterations that is necessary in order to
achieve certain values of Energy after the guard interval

total Energy (these are true errors, the error calcula-
tion is based on the true channel). For the 16-taps TEQ filter, the peak down to very little
energy values at the beginning of the equalizer training (→ Fig.7.13, Fig.7.14 and Fig.7.15)
has not been taken into account.

Energy after guard interval (32 taps)
Total energy Nbr iterations for Nbr. iterations for Nbr. iterations for

of WSAF non-weighted non-weighted
CIR ∗ TIR (64 taps) (64 taps) (16 taps)

10−3, SNR = 30dB 4 12 119
10−4, SNR = 30dB 5 195 271
10−5, SNR = 30dB 735 456 340

(uncertain) (uncertain) (uncertain)

10−3, SNR = 40dB 3 11 133
10−4, SNR = 40dB 5 198 287
10−5, SNR = 40dB 26 445 413

10−3, SNR = 50dB 3 11 134
10−4, SNR = 50dB 5 198 292
10−5, SNR = 50dB 23 442 446

Table 7.4: Minimum number of iterations for a remaining energy of wn ∗ cn after the guard
interval.

The tables Tab.7.3 and Tab.7.4 demonstrate the faster convergence speed of the new
WSAF algorithm compared to the LMS solution. As it has been calculated in chapter
6, the price for this improvement is an increase of the tap update calculation complexity
(→ Tab.6.10) and a slight increase of the convolution complexity TEQ∗Received data (→
Tab.6.12).

78 MOTOROLA PROPRIETARY INFORMATION

Chapter 8

Conclusions

The ADSL simulator in C/C++ works well and guarantees fast results. The TEQ filter tap
update is, for example, approximately 50 times faster than its MATLAB version. In the
future, new modules can be easily tested and it won’t be difficult to determine their perfor-
mance.

The new filter tap update algorithm that has been discussed in the last chapters uses a
weighted criterion in order to improve the convergence speed. The resulting performance
boost is considerable, compared to the classical least mean square (LMS) algorithm. In our
simulations, after approximately 5-10 iterations the new algorithm already delivers good
results (→ Tab.7.4). The classical LMS algorithm needed 200 iterations or more. The price
for the better convergence properties is that more filter coefficients must be used, otherwise
the new Weighted Sub-band Adaptive Filter (WSAF) algorithm does not converge.

The Target Impulse Response (TIR) filter has been initialized with filter coefficients
where only one coefficient is non-zero. So, at each iteration the TEQ filter is adapted to the
latest TIR and the TIR filter is updated afterwards. Thanks to the improved convergence
speed of the new algorithm, the main problem of the LMS algorithm is eliminated and its
simple structure can actually be used for an implementation. It is much simpler and less
costly in computation time than the propositions of Chow [7] which are widely used despite
of the fact that they result in costly eigenvalue problems.

Our simulations are based on the CSA-Loop #6 scenario (9 kfeet length, 26 American
Wire Gauge (AWG)), as it is defined by the ADSL standard [3] (→ Fig.7.1). The attenua-
tions for the high frequencies are much more important for longer loops. Hereby, an even
better performance is expected for the new algorithm using a weighted criterion compared
to the classical LMS.

In the end, a new algorithm is proposed that combines the simple implementation struc-
tures of the LMS algorithm with a fast convergence speed. This proposition can be consid-
ered as an excellent solution for any xDSL system.

MOTOROLA PROPRIETARY INFORMATION 79

CHAPTER 8. CONCLUSIONS

In the future, a hybrid circuit emulation and an echo cancelling unit may be implemented
into the simulator. This will allow to get an even better impression of the performance of
the proposed WSAF equalization algorithm. Moreover, a field test of the new algorithm in
an existing ADSL environment is still to be done.

80 MOTOROLA PROPRIETARY INFORMATION

Appendix A

Convergence properties of the LMS
algorithm

This report presents an adaption of the Weighted Sub-band Adaptive Filter (WSAF) algo-
rithm proposed by de Courville [10] to an ADSL system. Weighting factors in the frequency
domain are introduced in order to optimize the convergence speed. This appendix demon-
strates theoretically why the convergence speed can actually be optimized by these factors.
The information presented here is mainly based on Proakis [27], Haykin [14], Kay [19] and
de Courville [10, 11].

A.1 Some definitions and properties

Here, some definitions and properties are presented which will help us to understand the
WSAF properties (→ Haykin [14], Kay [19]).

Definition: A discrete random process rn is a sequence of random variables de-
fined for every integer n

Definition: A wide sense stationary (WSS) discrete random process has a mean
E(rn) = µr which does not depend on n and an autocorrelation func-
tion tr[k] = tr[n, n − k] = E(rnr?

n−k) which depends only on the lag
k between the two samples and not their absolute positions.

Definition: The N -by-1 observation vector Rn represents the elements of the time
series rn: Rn = (rn, rn−1, ..., rn−N+1)

t.

Property 1: The correlation matrix of a stationary discrete-time stochastic process
is hermitian: TA

H = TA with

TA = E(RnRH
n) (A.1)

=

tr[0] tr[1] · · · tr[N − 1]
tr[−1] tr[0] · · · tr[N − 2]

...
...

. . .
...

tr[−N + 1] tr[−N + 2] · · · tr[0]

. (A.2)

MOTOROLA PROPRIETARY INFORMATION 81

APPENDIX A. CONVERGENCE PROPERTIES OF THE LMS ALGORITHM

Property 2: Property 1 corresponds to: tr[−k] = t?r [k].

Proof: It is known that tr[k] = tr[n, n − k] = E(rnr?
n−k). Now we

try to rewrite t?r [−k] in a similar way: t?r[−k] = t?r [n, n + k] =
E(rnr?

n+k)
? = E(r?

nrn+k) = E(r?
n−krn) = E(rnr?

n−k) = tr[n, n −
k]. In the end, t?r[−k] = tr[k] and therefore t?r[k] = tr[−k]. q.e.d.

Property 3: Minimizing the cost function J = E(ene?
n) = E(|en|2) is equivalent

to E(rn−ke
?
n) = 0 (principle of orthogonality). Hereby, w?

k are the

coefficients of an adaptive filter with the output yn =
∞∑

k=0

w?
krn−k, the

sampled error to be minimized is en = dn−yn and the desired impulse
response is dn.

Proof: With the kth filter coefficient being wk = ak + jbk, k = 0, 1, 2, ...
a gradient operator ∇k can be defined as ∇k = ∂

∂ak
+ j ∂

∂bk
, k =

0, 1, 2, The multidimensional complex gradient vector is defined
as ∇(J) whose kth element is ∇k(J) = ∂J

∂ak
+ j ∂J

∂bk
, k = 0, 1, 2,

For the cost function J to attain its minimum, all elements of ∇(J)
must be zero. Under these conditions, we have the optimum in the
mean-squared-error sense. With J = E(ene?

n), we obtain ∇k(J) =

E
(

e?
n

∂en

∂ak
+ en

∂e?
n

∂ak
+ je?

n
∂en

∂bk
+ jen

∂e?
n

∂bk

)

. Hereby, ∂en

∂ak
= −rn−k,

∂en

∂bk
= jrn−k, ∂e?

n

∂ak
= −r?

n−k and ∂e?
n

∂bk
= −jr?

n−k with en = dn − yn.
Substituting all the partial derivates in ∇k(J), we obtain ∇k(J) =
−2E(rn−kr

?
n). So, ∇k(J) = 0 is equivalent to E(rn−ke

?
n) = 0. q.e.d.

Property 4: The principle of orthogonality E(rn−ke
?
n) = 0 corresponds to the ex-

pression TAWo = P× (Wiener-Hopf Equation in matrix form) where
Wo denotes the N -by-1 optimum tap-weight vector of the transversal
filter and P× the N -by-1 cross-correlation vector P× = E(Rnd?

n) be-
tween the tap inputs of the filter Rn and the desired response dn.

Proof: With yn =
∞∑

k=0

w?
krn−k, we obtain

E(rn−ke
?
n) = E

(

rn−k

(

d?
n −

∞∑

i=0
woir

?
n−i

))

= 0 with Wo =

(wo0, wo1, ..., wo(N−1)). This corresponds to
∞∑

i=0
woiE(rn−kr

?
n−i) =

E(rn−kd
?
n) or TAWo = P×. q.e.d.

A.2 Convergence properties of the LMS algorithm

Using the observations presented by the upper section, it won’t be difficult to understand
the convergence properties of the LMS algorithm with and without weighting factors.

The optimum equalizer coefficients Wo for minimizing the MSE are determined from
the solution of the set of linear equations

TAWo = P×. (A.3)

82 MOTOROLA PROPRIETARY INFORMATION

A.2. CONVERGENCE PROPERTIES OF THE LMS ALGORITHM

As defined above, TA is the autocorrelation matrix of the received signal, Wo is the op-
timum vector of equalizer tap gains and P× is the vector of cross-correlations (→ Property
4). Using the LMS algorithm, Wo is approximated iteratively:

Wk+1 = Wk − µGk (A.4)

= (I − µTA)Wk + µP× (A.5)

with

Gk =
1

2
· ∂J

∂Wk
(A.6)

= TAWk − P× (A.7)

= E(enR?
n). (A.8)

Rn is the vector of the received signal samples, µ is the step size and J the cost function.

Now, we are going to decouple the equations by performing a linear transformation. We
note that the matrix TA is hermitian and, hence, can be represented as

TA = UΛUH (A.9)

where U is the normalized modal matrix of TA and Λ is a diagonal matrix containing
the eigenvalues of TA.

Now, we define the transformed (orthogonalized) vectors

W o
k = UHWk (A.10)

and

P o
× = UHP×. (A.11)

We obtain

W o
k+1 = (I − µΛ) W o

k + µP o
×. (A.12)

Their convergence properties are determined from

W o
k+1 = (I − µΛ) W o

k . (A.13)

MOTOROLA PROPRIETARY INFORMATION 83

APPENDIX A. CONVERGENCE PROPERTIES OF THE LMS ALGORITHM

The recursive relation will converge provided that

|1 − µλk| < 1. (A.14)

In other words, µ must satisfy the inequality

0 < µ <
2

λmax
(A.15)

where λmax is the large eigenvalue of TA. We obtain rapid convergence when |1−µλk|
is small. This cannot be achieved if there is a large difference between the smallest eigen-
value λmin and the large eigenvalue λmax of TA. In the end, even if we select µ near the
upper bound given by (A.15), the convergence rate is determined by the smallest eigenvalue
λmin. Expressed in a different way, the ration λmax

λmin
determines the convergence rate, since

only if |1 − µλk| is small for all µλk, the overall convergence will be fast.

Using the weighted sub-band adaptive filter (WSAF) algorithm, the weights play the
role of normalization coefficients such that the eigenvalue spread is reduced. Therefore,
faster convergence can be obtained. A more detailed discussion of the convergence proper-
ties can be found in de Courville [10, 11].

84 MOTOROLA PROPRIETARY INFORMATION

Appendix B

A practical implementation of the
WSAF algorithm

Here, some practical issues with regard to an implementation of the WSAF update algorithm
are discussed.

B.1 Switching the inputs to the FFTs/IFFTs

As it has been discussed in chapter 6, a practical implementation of the FFT or IFFT respec-
tively requires the first transmitted value at the beginning and the last transmitted value at
the end of the input vector (i.e. a scenario that is exactly vice versa).

This fact must be taken into account by switching the inputs to the FFTs/IFFTs, since
the result of a convolution/correlation is unfortunately not exactly the same when all vectors
are flipped:

IFFT

FFT

r0(n)
r1(n)

...
rN−1(n)

� FFT

e0(n)
e1(n)

...
eN−1(n)

(B.1)

6=

FLIP

IFFT

FFT

rN−1(n)
rN−2(n)

...
r0(n)

� FFT

eN−1(n)
eN−2(n)

...
e0(n)

, (B.2)

where FLIP is an operator for turning a vector:

MOTOROLA PROPRIETARY INFORMATION 85

APPENDIX B. A PRACTICAL IMPLEMENTATION OF THE WSAF ALGORITHM

FLIP

rN−1(n)
...

r1(n)
r0(n)

=

r0(n)
r1(n)

...
rN−1(n)

. (B.3)

B.2 Standard definitions of FFT/IFFT operations

Our definition of the matrix performing the FFT operation

FN =
1√
N

·
(

W lk
N

)

(B.4)

with

W lk
N = e−j 2π

N
lk, 0 ≤ l ≤ N − 1, 0 ≤ k ≤ N − 1 (B.5)

is usually substituted by

F̃N =
(

W lk
N

)

. (B.6)

In this case, the matrix
(

F̃N

)H
doesn’t correspond to the inverse any more:

F̃N · F̃H
N = N · IN (B.7)

as it did before:

FN · F H
N = IN . (B.8)

The matrix multiplication FN×N
2

· (· · ·) can be done by using a FFT. Hereby, the

first N
2 values in the frequency domain are kept, the rest is truncated. The multiplication

FH
N×N

2

· (· · ·) is done by an IFFT. Hereby, the N
2 values in the frequency domain are used

for the N
2 first inputs of the IFFT, the remaining N

2 inputs are fed with zeros.

86 MOTOROLA PROPRIETARY INFORMATION

Appendix C

Software description of the ADSL
simulator in C/C++

The appendixes C to H present a top-level description of the ADSL-SIMULATOR project. It
provides an overview of the C/C++ program architecture. Each module is briefly described.
A hierarchical diagram of the architecture is drawn-up.

The ADSL-SIMULATOR intends to simulate the Time Domain Equalizer (TEQ) train-
ing, two different kinds of transmitters (central-office transmitter and home transmitter),
a channel and the home receiver. Therefore, the program can be divided into 5 parts (→
appendix D to H):

• the central office transmitter;

• the home transmitter;

• the equalizer training;

• the channel (for the central-office data);

• the home receiver.

The relevant part for DSP porting is of course the receiver function. An effort is made to
separate the 5 parts of the program into independent modules. The following annexes will
present the simulator in detail:

Appendix D presents a top-level description of the ADSL simulator.

Appendix E presents a module-level description of the ADSL simulator.

Appendix F presents a function-level description of the ADSL simulator.

Appendix G presents the parameter file determining the number of bits per OFDM/DMT
carrier used by the ADSL simulator.

MOTOROLA PROPRIETARY INFORMATION 87

APPENDIX C. SOFTWARE DESCRIPTION OF THE ADSL SIMULATOR IN C/C++

Appendix H comments the output of the ADSL simulator.

88 MOTOROLA PROPRIETARY INFORMATION

Appendix D

Top-level diagram of the ADSL
simulator

On figure D.1, the architecture of the various modules is drawn-up.

MAIN.C

Time Domain Equalizer (TEQ)
Convolution with received DataWSAF Tap-Update Algorithm

Time Domain Equalizer (TEQ)
Fast Convolution of the
Transmitted Data with the
Channel Impulse Response

Receiver home/office
Part I

* Tone ordering
* FFT
* Frequency Domain
 Equalization

* Trellis Decoding
* Constellation decoder

Receiver home/office
Part II

* Time Deinterleaving
* Reed Solomon Decoding
 (Forward Error correction)
* CRC Generation
* Energy Descrambling

Transmitter home/office
Part II

* Tone ordering
* Convolutional encoding
* Constellation encoding
* IFFT
* Adding guard interval

Transmitter home/office
Part I

* Multiplexing
* CRC Generation
* Energy Scrambling
* Reed Solomon FEC encoding
* Interleaving

Figure D.1: Top level diagram of the various modules of ADSL-SIMULATOR.

The seven modules presented above are packed into sub-functions and called by the
main function of the ADSL simulator.

MOTOROLA PROPRIETARY INFORMATION 89

APPENDIX E. MODULE-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

Appendix E

Module-level description of the
ADSL simulator

E.1 simulator.C/.h

This module contains only one function: main().
main() controls the sequencing of actions:

• parameters initialization with generate_Superframe_Properties_CO()/
generate_Superframe_Properties_Home() (transmission parameters) and
generate_bits_per_tone_CO()/ generate_bits_per_tone_Home() (Defining the num-
ber of bits per available tone);

• memory allocations withallocate_memory();

• Defining the data in the command buffer using generate_LS_Buffer();

• Creating the time domain data, simulating a channel, calculation of the time/frequency
domain equalizer filter taps using the WSAF algorithm, receiving the data;

• Error Control of the received and decoded data.

E.2 algor_enc.C/.h

This module contains the algor_enc class which performs the constellation encoding.

E.3 channel.C/.h

This module contains the Time Domain Equalizer (TEQ) taps calculation functions (using
the WSAF algorithm) and the function performing the convolution Received noisy data ∗
TEQ.

90 MOTOROLA PROPRIETARY INFORMATION

E.4. CONV_ENCODER.C/.H

E.4 conv_encoder.C/.h

This module contains the conv_encoder class which performs the convolutional encoding.

E.5 coset_select.C/.h

This module contains the coset_select class which performs the encoding of the two bits per
tone determining the coset.

E.6 CRC.C/.h

This module contains the CRC class which performs the generation of the byte for the
(c)yclic (r)edundancy (c)heck.

E.7 cvector.C/.h

This module contains the cvector class which defines an complex vector class and some
useful operators for it (addition, ...).

E.8 decoder.C/.h

This module contains the decoder class which calls the viterbi decoder function in order to
perform the maximum likehood decoding of one DMT symbol.

E.9 DEINTERL.C/.h

This module contains the DEINTERLEAVER class which performs the deinterleaving.

E.10 Descrambler.C/.h

This module contains the Descrambler class which performs the energy descrambling.

E.11 FEC.C/.h

This module contains the Reed-Solomon forward-error-correction encoder and decoder class.

MOTOROLA PROPRIETARY INFORMATION 91

APPENDIX E. MODULE-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

E.12 fft.C/.h

This module contains the fast fourier transformation (FFT) and inverse fast fourier trans-
form (IFFT) functions.

E.13 generate.C/.h

This module contains some initialization and memory allocation functions.

E.14 INTERL.C/.h

This module contains the INTERLEAVER class which performs the interleaving.

E.15 ivector.C/.h

This module contains the cvector class which defines an integer vector class and some useful
operators for it (addition, ...).

E.16 my_types.C/.h

This module defines a complex structure and some useful commands for it (get real part, get
imaginary part, division, multiplication, ...).

E.17 receiver_home_part1.C/.h

This module contains the first part of the home-receiver (Tone ordering, FFT, frequency do-
main equalization, Trellis Decoding, Constellation decoding). Here, only one DMT symbol
is affected.

E.18 receiver_home_part2.C/.h

This module contains the second part of the home-receiver (Deinterleaving, Reed Solomon
Decoding (forward error correction), CRC Generation for the decoded (probably erroneous)
data, Energy Descrambling). Here, one superframe is affected.

E.19 routines.C/.h

This module contains some helpful commands like conversion bit->integer, ... and a substi-
tution for the memset and memcpy command (to be (de)activated via the
USE_MEMMOVE_OF_STRING_H #define in switch.h).

92 MOTOROLA PROPRIETARY INFORMATION

E.20. SCRAMBLER.C/.H

E.20 Scrambler.C/.h

This module contains the Scrambler class which performs the energy scrambling.

E.21 tone_order.C/.h

This module contains the functions for the tone ordering.

E.22 tools.C/.h

This module contains the text-output functions which are called when not enough parame-
ters are specified or in similar cases. Moreover there are some helpful functions like finding
a certain bit in a string, etc...

E.23 transmitter_CO_part1.C/.h

This module contains the central office transmitter, part 1 (Multiplexing, CRC Generation,
Energy Scrambling, Reed-Solomon Encoding, Interleaving). Here, a whole superframe is
affected.

E.24 transmitter_CO_part2.C/.h

This module contains the central office transmitter, part 2 (Tone Ordering, Trellis encoding,
Constellation encoding, IFFT, Adding the Guard Interval). Here, only one DMT symbol is
affected.

E.25 viterbi_decoder.C/.h

This module contains the viterbi_decoder class which performs a 4-D trellis decoding of a
message being encoder with Wei’s encoder.

E.26 wei_encoder.C/.h

This module contains the wei_encoder class which performs the convolutional encoding
using Wei’s code.

E.27 constants.h

This h-file contains the constants used by the simulator.

MOTOROLA PROPRIETARY INFORMATION 93

APPENDIX E. MODULE-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

E.28 debug.h

This h-file contains the Error()-#define which is very helpful for the debugging.

E.29 define.h

This h-file contains some general constant defintions and the definitions of the structures
used by the simulator.

E.30 switch.h

This h-file contains all compiler-switches for the simulator.

94 MOTOROLA PROPRIETARY INFORMATION

Appendix F

Function-level description of the
ADSL simulator

F.1 How to read this description

The description aims at helping the porting of the algorithms, at supporting the debugging
of potential errors and at facilitating the adding of new functions. Therefore, several types
of parameters are distinguished:

• The ’Input vars’ field is a list of the variables which are not modified by the function
(read-only parameters)

• The ’Output vars’ field is a list of write-only variables

• The ’I/O vars’ field gathers the other parameters passed to the function

F.2 Transmitter

F.2.1 algor_enc.C

algor_enc::algor_enc(char *algor_name)

Author: Kiaei/Markus Muck

Description: This is the constructor of the algor_enc class. Here, the coset file table is loaded and
local variables reset to zero.

Input vars: char *algor_name: Any name given to the object.

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 95

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

algor_enc::algor_enc()

Author: Kiaei/Markus Muck

Description: This is the constructor of the algor_enc class. Here, the coset file table is loaded and
local variables reset to zero.

Input vars: none

Output vars: none

I/O vars: none

algor_enc::˜algor_enc()

Author: Kiaei/Markus Muck

Description: This is the destructor of the algor_enc class. Here, the memory reserved for the object
name is freed.

Input vars: none

Output vars: none

I/O vars: none

void algor_enc::output(int input_vector[], int bits, int I[], int Q[],int& x_value, int&
y_value)

Author: Kiaei/Markus Muck

Description: Here, the constellation encoding for one carrier is done.

Input vars: int input_vector[]: Bits to be encoded
int bits: number of bits to be encoded

Output vars: int I[]: Encoded bits real
int Q[]: Encoded bits imaginary
int& x_value: Encoded symbol real
int& y_value: Encoded symbol imaginary

I/O vars: none

void algor_enc::display(int tonenumber)

Author: Kiaei/Markus Muck

Description: This function writes the results of the constellation encoder to the standard output
device.

Input vars: int tonenumber: Number of Tone/Carrier

Output vars: none

I/O vars: none

96 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

F.2.2 conv_encoder.C

conv_encoder::conv_encoder(char *conv_encoder_name)

Author: Kiaei/Markus Muck

Description: This is the constructor of the conv_encoder class. Here, the encoder states are reset
to zero.

Input vars: char *conv_encoder_name: Any name given to the object.

Output vars: none

I/O vars: none

conv_encoder::conv_encoder()

Author: Kiaei/Markus Muck

Description: This is the constructor of the conv_encoder class. Here, the encoder states are reset
to zero.

Input vars: none

Output vars: none

I/O vars: none

conv_encoder::˜conv_encoder()

Author: Kiaei/Markus Muck

Description: This is the destructor of the conv_encoder class. Here, the memory reserved for the
object name is freed.

Input vars: none

Output vars: none

I/O vars: none

conv_encoder::output(int *U, int *S)

Author: Kiaei/Markus Muck

Description: This function performs the convolutional encoding. The incoming data is U[1] and
U[2] (U[0] contains a dummy value, → T1E1 6.6.2, Figure 10), the latest state S[0..3].
After the transition, the new encoder state is written into S[0..3].

Input vars: int *U: Incoming data in U[1] and U[2] (→ T1E1 6.6.2, Figure 10)

Output vars: none

I/O vars: int *S: Latest/new encoder state

MOTOROLA PROPRIETARY INFORMATION 97

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

conv_encoder::display()

Author: Kiaei/Markus Muck

Description: This functions is for debugging only. The latest encoder state is displayed.

Input vars: none

Output vars: none

I/O vars: none

F.2.3 coset_select.C

coset_select::coset_select(char *coset_select_name)

Author: Kiaei/Markus Muck

Description: This is the constructor of the coset_select class. Here, the variables containing the
latest incoming data U[0..3] (→ T1E1 6.6.2, Figure 10) are reset to zero.

Input vars: char *coset_name: Any name given to the object.

Output vars: none

I/O vars: none

coset_select::coset_select()

Author: Kiaei/Markus Muck

Description: This is the constructor of the coset_select class. Here, the variables containing the
latest incoming data U[0..3] (→ T1E1 6.6.2, Figure 10) are reset to zero.

Input vars: none

Output vars: none

I/O vars: none

coset_select::˜coset_select()

Author: Kiaei/Markus Muck

Description: This is the destructor of the coset_select class. Here, the memory reserved for the
object name is freed.

Input vars: none

Output vars: none

I/O vars: none

98 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

coset_select::output(int u[],int *v,int *w)

Author: Kiaei/Markus Muck

Description: Here, the coset of the symbol corresponding to the convolutionally encoded data
u[0..3] is calculated (→ T1E1, 6.6.2., the (v0, v1) and (w1, w0) are calculated cor-
responding to the two 2-D cosets).

Input vars: int u[]: Incoming data in u[0..3]

Output vars: int *v: Only v[0], v[1] corresponding to (v0, v1) are written
int *w: Only w[0], w[1] corresponding to (w0, w1) are written

I/O vars: none

coset_select::display()

Author: Kiaei/Markus Muck

Description: This functions is for debugging only. The latest incoming data is displayed.

Input vars: none

Output vars: none

I/O vars: none

F.2.4 CRC.C

CRC::CRC(char *CRC_name)

Author: Kiaei/Markus Muck

Description: This is the constructor of the CRC class. Here, the shift registers are reset to zero.

Input vars: char *CRC_name: Any name given to the object.

Output vars: none

I/O vars: none

CRC::CRC()

Author: Kiaei/Markus Muck

Description: This is the constructor of the CRC class. Here, the shift registers are reset to zero.

Input vars: none

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 99

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

CRC::˜CRC()

Author: Kiaei/Markus Muck

Description: This is the destructor of the CRC class. Here, the memory reserved for the object
name is freed.

Input vars: none

Output vars: none

I/O vars: none

CRC::init(int value)

Author: Kiaei/Markus Muck

Description: This functions allows to set the shift registers of the cyclic redundancy check to a
certain value.

Input vars: int value: Value ∈ (0, 1, .., 255) of the encoder state.

Output vars: none

I/O vars: none

int CRC::output(int datain)

Author: Kiaei/Markus Muck

Description: An arriving bit datain ∈ (0, 1) enters the encoder. The resulting encoder state is
returned.

Input vars: int datain: Bit entering the encoder

Output vars: return-value: Resulting encoder state

I/O vars: none

int CRC::showreg()

Author: Kiaei/Markus Muck

Description: This functions returns the latest encoder state.

Input vars: none

Output vars: return-value: Latest encoder state

I/O vars: none

100 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

F.2.5 FEC.C

FEC::FEC()

Author: Kiaei/Markus Muck

Description: This is the constructor of the FEC class. Right now, it is empty, but may be used in
future.

Input vars: none

Output vars: none

I/O vars: none

FEC::˜FEC()

Author: Kiaei/Markus Muck

Description: This is the destructor of the FEC class. Right now, it is empty, but may be used in
future.

Input vars: none

Output vars: none

I/O vars: none

int FEC::mul(int a, int b)

Author: Kiaei/Markus Muck

Description: This function performs a galois-field-multiplication.

Input vars: int a: First operand
int b: Second operand

Output vars: return-value: Result of multiplication a · b

I/O vars: none

int FEC::inv(short int a)

Author: Kiaei/Markus Muck

Description: This function performs a galois-field-inversion.

Input vars: short int a: Value to be inverted

Output vars: return-value: Inverted value

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 101

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

int FEC::add(int a , int b)

Author: Kiaei/Markus Muck

Description: This function performs a galois-field-addition.

Input vars: int a: First operand
int b: Second operand

Output vars: return-value: Result of addition a + b

I/O vars: none

int FEC::Syndrome(unsigned char *Bad_Data, int N, int t)

Author: Kiaei/Markus Muck

Description: Calculates the error syndrome. If zero, there is no error to be found.

Input vars: unsigned char *Bad_Data: Pointer to the received data
int N: Codeword length in bytes
int t: The redundancy per codeword is 2 · t

Output vars: return-value: 0 if no error detected, 1 if data erroneous

I/O vars: none

FEC::Euclid()

Author: Kiaei/Markus Muck

Description: Calculates the (G)reatest (C)ommom (D)ivisor (GCD) of two polynomials.

Input vars: none

Output vars: none

I/O vars: none

int FEC::Chien()

Author: Kiaei/Markus Muck

Description: This function finds all error locations by stepping through all the 255 possible loca-
tions (0-254).

Input vars: none

Output vars: none

I/O vars: none

102 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

FEC::Value()

Author: Kiaei/Markus Muck

Description: uses the GCD remainder and the Error_locator_polynomial to find Values.

Input vars:

Output vars: none

I/O vars: none

FEC::Value_Correct(unsigned char *Bad_Data, int N)

Author: Kiaei/Markus Muck

Description: Given the locations and values found this function corrects the bad bytes.

Input vars: unsigned char *Bad_Data: Pointer to the received data
int N: Codeword length in bytes

Output vars: none

I/O vars: none

int FEC::Encode(int byte,int cont, int addr, int Rsel)

Author: Kiaei/Markus Muck

Description: This function performs the Reed-Solomon Encoding.

Input vars: int byte: Latest byte to be encoded
int cont: Control-sequence:

FEC_CONTROL_IDLE idle
FEC_CONTROL_READ_DATA_AND_DIV IDE read data and divide
FEC_CONTROL_SHIFT_OUT_FROM_MEMORY shift out to memory (add reg #0-19)
FEC_CONTROL_SHIFT_IN_FROM_MEMORY shift in from memory
FEC_CONTROL_SHIFT_OUT_CHECK_BY TES shift out check bytes

Output vars: return-value: Redundancy bytes when using the
FEC_CONTROL_SHIFT_OUT_CHECK_BYTES control sequence

I/O vars: none

int FEC::lookuplog(int value)

Author: Kiaei/Markus Muck

Description: Returns the log of a Galois field element.

Input vars: int value: A value as parameter

Output vars: return-value: The log of the parameter is returned

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 103

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

int FEC::lookupvalue(int log)

Author: Kiaei/Markus Muck

Description: Returns a Galois field value given a log as input.

Input vars: int log: A value as parameter

Output vars: return-value: Galois field value given a log as input

I/O vars: none

F.2.6 fft.C

void fft(cvector &x, int N, window_type window)

Author: Kiaei/Markus Muck

Description: This function performs a windowing operation (window ∈ (rectangle, Hamming,
Hanning, Bartlett, Blackman, Blackman_Harris)) and afterwards the fast fourier trans-
form using fftwork.

Input vars: int N: Number of taps
window_type window: window type ∈ (rectangle, Hamming, Hanning, Bartlett, Black-
man, Blackman_Harris)

Output vars: none

I/O vars: cvector &x: Time domain data, will be overwritten with the frequency domain data

void ifft(cvector &x, int N)

Author: Kiaei/Markus Muck

Description: This function performs the inverse fast fourier transform using fftwork.

Input vars: int N: Number of taps

Output vars: none

I/O vars: cvector &x: Frequency domain data, will be overwritten with the time domain data

void fftwork(int M, cvector &x, int inverse_flag, int N2)

Author: Kiaei/Markus Muck

Description: This function really performs the (inverse) fast fourier transform.

Input vars: int M: M = log2(FFTsize)
int inverse_flag: 0 for FFT, 1 for IFFT
int N2: Dummy, may have any value

Output vars: none

I/O vars: cvector &x: Time domain data, will be overwritten with the frequency domain data

104 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

void Hamming_w(cvector &x, int n)

Author: Kiaei/Markus Muck

Description: This function performs the windowing operation using the Hamming algorithm.

Input vars: int n: Number of taps

Output vars: none

I/O vars: cvector &x: Data to be windowed. Will be overwritten with the windowed data

void Hanning_w(cvector &x, int n)

Author: Kiaei/Markus Muck

Description: This function performs the windowing operation using the Hanning algorithm.

Input vars: int n: Number of taps

Output vars: none

I/O vars: cvector &x: Data to be windowed. Will be overwritten with the windowed data

void Bartlett_w(cvector &x, int n)

Author: Kiaei/Markus Muck

Description: This function performs the windowing operation using the Bartlett algorithm.

Input vars: int n: Number of taps

Output vars: none

I/O vars: cvector &x: Data to be windowed. Will be overwritten with the windowed data

void Blackman_w(cvector &x, int n)

Author: Kiaei/Markus Muck

Description: This function performs the windowing operation using the Blackman algorithm.

Input vars: int n: Number of taps

Output vars: none

I/O vars: cvector &x: Data to be windowed. Will be overwritten with the windowed data

MOTOROLA PROPRIETARY INFORMATION 105

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

void Blackman_Harris_w(cvector &x, int n)

Author: Kiaei/Markus Muck

Description: This function performs the windowing operation using the Blackman-Harris algo-
rithm.

Input vars: int n: Number of taps

Output vars: none

I/O vars: cvector &x: Data to be windowed. Will be overwritten with the windowed data

F.2.7 INTERLEAVER.C

INTERLEAVER::INTERLEAVER()

Author: Markus Muck

Description: This is the constructor of the INTERLEAVER class. Here, the interleaving memory
is allocated and reset to zero.

Input vars: none

Output vars: none

I/O vars: none

INTERLEAVER::˜INTERLEAVER()

Author: Markus Muck

Description: This is the destructor of the INTERLEAVER class. Here, the memory reserved for
the object name is freed.

Input vars: none

Output vars: none

I/O vars: none

int INTERLEAVER::DO_INTERLEAVING(unsigned char *Data_out, unsigned char*
Data, int nbr_frames, int Nb_Bytes_CodeWord, int depth)

Author: Markus Muck

Description: This function performs the interleaving using a circular buffer.

Input vars: unsigned char* Data: Data to be interleaved
int nbr_frames: Number of codeword frames to be interleaved
int Nb_Bytes_CodeWord: Number of bytes per codeword frame
int dept: Interleaving depth

106 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

Output vars: unsigned char *Data_out: Interleaved data

I/O vars: none

F.2.8 Scrambler.C

Scrambler::Scrambler(char *scrambler_name)

Author: Kiaei/Markus Muck

Description: This is the constructor of the Scrambler class. Here, the registers are reset to zero.

Input vars: char *scrambler_name: Any name given to the object.

Output vars: none

I/O vars: none

Scrambler::Scrambler()

Author: Kiaei/Markus Muck

Description: This is the constructor of the Scrambler class. Here, the registers are reset to zero.

Input vars: none

Output vars: none

I/O vars: none

Scrambler::˜Scrambler()

Author: Kiaei/Markus Muck

Description: This is the destructor of the Scrambler class. Here, the memory reserved for the object
name is freed.

Input vars: none

Output vars: none

I/O vars: none

Scrambler::init(int value)

Author: Kiaei/Markus Muck

Description: This functions allows to set the registers of the scrambler to a certain value.

Input vars: int value: Value ∈ (0, 1, .., 223 − 1) of the scrambler state.

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 107

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

int Scrambler::output(int datain)

Author: Kiaei/Markus Muck

Description: An arriving bit datain ∈ (0, 1) enters the scrambler. The resulting scrambler state is
returned.

Input vars: int datain: Bit entering the scrambler

Output vars: return-value: Resulting scrambler state

I/O vars: none

int Scrambler::showreg()

Author: Kiaei/Markus Muck

Description: This functions returns the latest scrambler state.

Input vars: none

Output vars: return-value: Latest encoder state

I/O vars: none

int Scrambler::display()

Author: Kiaei/Markus Muck

Description: This functions writes the scrambler name to the standard output stream. It’s for de-
bugging only.

Input vars: none

Output vars: none

I/O vars: none

F.2.9 tone_order.C

void do_tone_ordering(unsigned int *tone_nr, unsigned int *nbr_bits, unsigned int
*nbr_tones_used)

Author: Markus Muck

Description: This function reads the file defining the number of bits per tone. The file name is
defined by FILE_BITS_PER_TONE (→ constants.h).

Input vars: none

108 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

Output vars: unsigned int *tone_nr: In the end, there are “unsigned int *nbr_tones_used” tones
carrying at least two bits. All these tones are ordered, beginning with the tones car-
rying the least number of bits (but ≥ 2). “tone_nr[x]” contains the tone-number of
the “x”th sorted tone
unsigned int *nbr_bits: In the end, this array contains the number of bits for each
tone carrying at least two bits. Attention: If a tone carries less than two bits, it won’t
be used and is therefore not written into this array. In order to identify the different
tones, the array “unsigned int *tone_nr” is used. “nbr_bits[x]” contains the number
of bits of the “x”th sorted tone
unsigned int *nbr_tones_used: Number of tones carring at least two bits

I/O vars: none

void read_tone(FILE *Handle, unsigned int *Buffer)

Author: Markus Muck

Description: This function is used by do_tone_ordering and reads the number of bits per tone from
a text file.

Input vars: FILE *Handle: File handle

Output vars: unsigned int *Buffer: Buffer containing the number of bits per tone

I/O vars: none

F.2.10 transmitter_CO_part1.C

void transmitter_central_office_part1(unsigned char *InputDataAS, unsigned int Data-
ToTransmitAS, unsigned char *InputDataLS, unsigned int DataToTransmitLS, un-
signed char *Superframe_Memory_AS, unsigned char *Superframe_Memory_LS, un-
signed int *DataTransmittedAS, unsigned int *DataTransmittedLS, unsigned char *Re-
dundancy_AS, unsigned char *Redundancy_LS, unsigned char *Data_Interleaved,
struct Sframe_Properties_CO Superframe_Properties_CO, unsigned short int *crc_check,
int *trellis_states)

Author: Markus Muck

Description: This function performs the first part of the transmission process (Multiplexing, (C)yclic
(R)edundancy (C)heck calculation, Reed-Solomon encoding, Scrambling, Time Inter-
leaving). Here, always one superframe is treated at a time.

Input vars: unsigned char *InputDataAS: Data to be transmitted in the ASX part
unsigned int DataToTransmitAS: Number of bytes to be transmitted
unsigned char *InputDataLS: Data to be transmitted in the LSX part
struct Sframe_Properties_CO Superframe_Properties_CO: Structure containing the
properties

Output vars: unsigned char *Data_Interleaved: Interleaved data, to be used by
transmitter_central_office_part2

MOTOROLA PROPRIETARY INFORMATION 109

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

I/O vars: unsigned char *Superframe_Memory_AS: Buffer used internally in order to build up
a superframe
unsigned int *DataTransmittedAS: Data already transmitted in the ASX part
unsigned int *DataTransmittedLS: Data already transmitted in the LSX part
unsigned char *Redundancy_AS: Buffer used internally for the ASX redundancy data
created by the Reed-Solomon encoder
unsigned char *Redundancy_LS: Buffer used internally for the LSX redundancy data
created by the Reed-Solomon encoder
unsigned short int *crc_check: Latest state of the CRC encoder
int *trellis_states: Latest state of the convolutional encoder. Must be reset to zero for
each DMT symbol.

F.2.11 transmitter_CO_part2.C

void transmitter_central_office_part2(unsigned char *Data_Interleaved,
struct Sframe_Properties_CO Superframe_Properties_CO,
unsigned int *nbr_bits_transmitted, double *TimeDomainData, int *trellis_states)

Author: Markus Muck

Description: This function performs the second part of the transmission process (Tone ordering,
Convolutional encoding, Constellation encoding, IFFT, Adding of the guard interval).
Here, only one DMT symbol is treated at a time.

Input vars: unsigned char *Data_Interleaved: Interleaved data created by
transmitter_central_office_part1
struct Sframe_Properties_CO Superframe_Properties_CO: Structure containing the
properties

Output vars: double *TimeDomainData: The time domain data of one DMT symbol. This buffer
contains only the real parts, since the imaginary parts are all zero.

I/O vars: unsigned int *nbr_bits_transmitted: Number of already transmitted bits
int *trellis_states: Latest state of the convolutional encoder

F.2.12 wei_encoder.C

wei_encoder::wei_encoder()

Author: Kiaei/Markus Muck

Description: This is the constructor of the wei_encoder class. Here, the encoder state is reset to
zero and the standard class name “Wei” is defined.

Input vars: none

Output vars: none

I/O vars: none

110 MOTOROLA PROPRIETARY INFORMATION

F.2. TRANSMITTER

wei_encoder::˜wei_encoder()

Author: Kiaei/Markus Muck

Description: This is the destructor of the wei_encoder class. Here, the memory reserved for the
object name is freed.

Input vars: none

Output vars: none

I/O vars: none

wei_encoder::clear_states()

Author: Kiaei/Markus Muck

Description: This function resets the state of the encoder to zero.

Input vars: none

Output vars: none

I/O vars: none

wei_encoder::set_states(int init_value)

Author: Kiaei/Markus Muck

Description: This function resets the state of the encoder to the value init_value.

Input vars: int init_value: Desired state of the encoder ∈ (0, 1, .., 15)

Output vars: none

I/O vars: none

int wei_encoder::output(int U[], int *S, int size1, int size2, complex *Point1, complex
*Point2)

Author: Kiaei/Markus Muck

Description: This function performs the convolutional encoding of the arriving data U[1..3] ∈
(0, 1) using the conv_encoder class (→ T1E1 6.6.2, Figure 10). One redundant bit is
added to U[0] ∈ (0, 1). Afterwards, the coset corresponding to U[1..3] is calculated
using the coset_select class. Finally, the arriving data U[0...max] are encoded into the
symbols for two tones using the algor_enc class.

Input vars: int U[]: Data to be encoded with U[] ∈ (0, 1)
int size1: Number of bits of the first tone
int size2: Number of bits of the second tone

MOTOROLA PROPRIETARY INFORMATION 111

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

Output vars: complex *Point1: Unscaled encoded symbol for tone 1
complex *Point2: Unscaled encoded symbol for tone 2

I/O vars: int *S: States of the encoder

F.3 Channel and TEQ update

F.3.1 channel.C

void LoadChannelImpulseResponse(double **FreqDomainValues, double **FreqDo-
mainValues_1024)

Author: Markus Muck

Description: This function loads the Channel Impulse Response (CIR) time domain samples, trun-
cates the channel delay (i.e. all samples before the peak-sample) and performs a
transformation of the samples into frequency domain. Once, the CIR is transformed
on the basis of 512 samples (→ FreqDomainValues) and once, there are 512 zeros
added in the time domain and a FFT performed based on 1024 samples. The path
and name of the file containing the time domain samples of the CIR is defined by
“FILE_CIR” in the file “constants.h”.

Input vars: none

Output vars: double **FreqDomainValues: Memory is reserved for “*FreqDomainValues” and
the frequency domain values based on 512 samples are copied into it
double **FreqDomainValues_1024: Memory is reserved for “*FreqDomainValues_1024”
and the frequency domain values based on 1024 samples are copied into it

I/O vars: none

void Convolution_Test(double *FreqDomainValues)

Author: Markus Muck

Description: This function is used for testing only. The frequency domain data of the Channel
Impulse Response (CIR) loaded by “LoadChannelImpulseResponse” are convolved
with a sequency of samples which consist of two diracs and zeros for the rest. The
resulting samples are re-transformed into time domain.

Input vars: double *FreqDomainValues: The Channel Impulse Response (CIR) in the frequency
domain based on 512 samples

Output vars: none

I/O vars: none

112 MOTOROLA PROPRIETARY INFORMATION

F.3. CHANNEL AND TEQ UPDATE

void Generate_C_REVERB1(double **C_REVERB1_Freq, double **C_REVERB1_Time)

Author: Markus Muck

Description: This function generates the “C-REVERB1” symbol defined by the ADSL standard
based on 512 samples. Memory is reserved for “*C_REVERB1_Freq” and
“*C_REVERB1_Time” and the resulting frequency and time domain samples are
copied into these two arrays.

Input vars: none

Output vars: double **C_REVERB1_Freq: Frequency domain samples of the “C-REVERB1”
symbol
double **C_REVERB1_Time: Time domain samples of the “C-REVERB1” symbol

I/O vars: none

void Calculate_Noise_Amplitude(double SNR_dB, double *C_REVERB1_Freq, dou-
ble *CIR_FreqDomainValues, double *Noise_Amplitude, double **Estimated_Channel_Freq)

Author: Markus Muck

Description: This function calculates (CIR convolved C-REVERB1) and its resulting energy. The
energy is divided by the number of carriers (512 usually). The noise amplitude per
time domain sample corresponding to the given SNR is calculated. Additionally, the
channel estimation is performed (noisy environment). The estimated channel does
therefore not EXACTLY correspond to the true channel. The channel is estimated us-
ing NBR_SYMBOLS_FOR_CHANNEL_ESTIMATION arriving symbols in order
to make the influence of the noise smaller.

Input vars: double SNR_dB: The desired SNR of the transmission in dB
double *C_REVERB1_Freq: The “C-REVERB1”-symbol in frequency domain
double *CIR_FreqDomainValues: The frequency domain values of the Channel Im-
pulse Response (CIR) based on 512 samples

Output vars: double *Noise_Amplitude: Amplitude of the noise samples
double **Estimated_Channel_Freq: Memory is reserved for “*Estimated_Channel_Freq”
and the channel - estimated in a noisy environment - is copied into it

I/O vars: none

void Calculate_Filter_Coeff(double *C_REVERB1_Freq, double *C_REVERB1_Time,
double *CIR_FreqDomainValues, double Noise_Amplitude, double **TEQ_FilterCoeff,
double **TEQ_Filter_Coeff_1024_Freq, complex *Coeff_Equalization_Freq_Domain)

Author: Markus Muck

Description: This function determines the optimal filter coefficients of the Time Domain Equaliz-
ing (TEQ) filter using the WSAF algorithm in order to calculate the filter tap updates.
The calculation is split up into 9 blocks: Initialization of the variables (calculation of

MOTOROLA PROPRIETARY INFORMATION 113

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

the weighting factors, initialization of the Time Domain Equalizing (TEQ) and Target
Impulse Response (TIR) filters, etc.), Convolution Channel Impulse Response (CIR)
∗ Transmitted Data X , Convolution Received noisy data R ∗ Time Domain Equaliz-
ing (TEQ) filter, Calculation of the new Target Impulse Response (TIR) filter coef-

ficients
(

= R∗TEQ
X |32 first samples

)

, Convolution New Target Impulse Response (TIR)

filter ∗ Transmitted Data X , Calculation of the error in the frequency domain based
on 1024 samples (= (TIR ∗ X) − (TEQ ∗ R)) and re-transformation into time do-
main (here, the error is limited to 512 samples for the fast correlation), Fast correlation
of the Received noisy data R and the error, Time Domain Equalizer (TEQ) update
(the results of the correlation are multiplied with a constant), calculation of the fre-
quency domain equalization coefficients (since we assume to have a Channel Impulse
Response CIR ∗ TEQ which is smaller than the guard interval, there is a circular
convolution performed in frequency domain which may be equalized by a coefficient
for each carrier): 1

TEQ∗CIR in the frequency domain.

Input vars: double **C_REVERB1_Freq: Frequency domain samples of the “C-REVERB1”
symbol
double **C_REVERB1_Time: Time domain samples of the “C-REVERB1” symbol
double *CIR_FreqDomainValues: Frequency domain samples of the Channel Im-
pulse Response (CIR)
double Noise_Amplitude: Noise amplitude calculated by “Calculate_Noise_Amplitude”

Output vars: double **TEQ_FilterCoeff: Resulting Time Domain Equalizing (TEQ) filter coeffi-
cients in the time domain, memory is reserved for “*TEQ_FilterCoeff”
double **TEQ_Filter_Coeff_1024_Freq: Resulting Time Domain Equalizing (TEQ)
filter coefficients in the frequency domain, memory is reserved for
“*TEQ_Filter_Coeff_1024_Freq”
complex *Coeff_Equalization_Freq_Domain: Array for the frequency domain equal-
ization coefficients, the memory for this array is reserved by “TEQ_Filter_Taps_Calculation”

I/O vars: none

void Calculate_Energy_After_GI(double *CIR_FreqDomainValues,
double *TEQ_FilterCoeff_Time)

Author: Markus Muck

Description: This function may be called after the Time Domain Equalizing (TEQ) filter taps cal-
culation. It performs the convolution TEQ∗CIR and calculates the remaining energy
of the resulting impulse response after the guard interval (usually 32 taps). This in-
formation won’t be used in any other function and is for testing purposes only.

Input vars: double *CIR_FreqDomainValues: Frequency domain samples of the Channel Im-
pulse Response (CIR)
double *TEQ_FilterCoeff_Time: Resulting Time Domain Equalizing (TEQ) filter co-
efficients in the time domain

Output vars: none

I/O vars: none

114 MOTOROLA PROPRIETARY INFORMATION

F.3. CHANNEL AND TEQ UPDATE

void Convolution_With_Channel_And_TEQ_Plus_AWGN_Noise(
double *Convolved_Data_Time_512, double *CIR_FreqDomainValues_1024, double
*TEQ_FilterCoeff_Freq_1024, double *Input_Data_Time_512, double Noise_Amplitude,
double *Overlap_Data)

Author: Markus Muck

Description: This function is used after the Time Domain Equalizing (TEQ) filter update calcula-
tion. It uses the resulting Time Domain Equalizing (TEQ) filter coefficients in order to
perform the fast convolution operation Received noisy data R ∗ Time Domain Equal-
izing (TEQ) filter using the Add-Overlap algorithm.

Input vars: double *CIR_FreqDomainValues_1024: The Channel Impulse Response (CIR) in the
frequency domain based on 1024 samples
double *TEQ_FilterCoeff_Freq_1024: The TEQ filter coefficients in the frequency
domain based on 1024 samples
double *Input_Data_Time_512: Received noisy samples in the time domain
double Noise_Amplitude: Noise amplitude calculated by “Calculate_Noise_Amplitude”

Output vars: double *Convolved_Data_Time_512: Resulting samples R ∗ TEQ

I/O vars: double *Overlap_Data: Buffer which is used for the Add-Overlap algorithm that is
used for the convolution

void TEQ_Filter_Taps_Calculation(double **TEQ_freq_1024,
double **ChannelImpulseResponse_Freq_1024, double **Overlap_Add_Buffer, dou-
ble *Noise_Amplitude, complex **Coeff_Equalization_Freq_Domain, double SNR)

Author: Markus Muck

Description: This function performs the calculation of the Time Domain Equalizing (TEQ) fil-
ter coefficients by calling the functions presented above: “Generate_C_REVERB1”,
“LoadChannelImpulseResponse”, “Calculate_Noise_Amplitude”, “Calculate_Filter_Coeff”
and “Calculate_Energy_After_GI”.

Input vars: double SNR_dB: The desired SNR of the transmission in dB

Output vars: double **TEQ_freq_1024: The Time Domain Equalizing (TEQ) filter coefficients in
the frequency domain based on 1024 samples
double **ChannelImpulseResponse_Freq_1024: The Channel Impulse Response (CIR)
in the frequency domain based on 1024 samples
double **Overlap_Add_Buffer: Buffer which is used for the Add-Overlap algorithm
that is used for the convolution
double *Noise_Amplitude: The resulting noise amplitude will be copied into this
variable
complex **Coeff_Equalization_Freq_Domain: Array for the frequency domain equal-
ization coefficients, the memory for this array is reserved by “TEQ_Filter_Taps_Calculation”

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 115

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

F.4 Receiver

F.4.1 decoder.c

decoder::decoder(ivector output_bit_distribution, ivector pointer_table,
char *decoder_name)

Author: Kiaei/Markus Muck

Description: This function is the constructor of the decoder class. Here, some memory is allocated
for the class name is allocated and the output size (=

∑
(Number of bits per tone))

is calculated. This constructor initializes as well the viterbi_decoder class and two
vectors (bit_distribution and permutation).

Input vars: ivector output_bit_distribution: Number of bits per tone
ivector pointer_table: Real tone number of any ordered tone #x
char *decoder_name: Any name given to the decoder class

Output vars: none

I/O vars: none

decoder::update_decoder(ivector output_bit_distribution, ivector pointer_table, char
*decoder_name)

Author: Markus Muck

Description: This function reinitializes the decoder variables. Here, the once reserved memory for
the class is freed and some memory is allocated for the class name is allocated and
the output size (=

∑
(Number of bits per tone)) is calculated.

Input vars: ivector output_bit_distribution: Number of bits per tone
ivector pointer_table: Real tone number of any ordered tone #x
char *decoder_name: Any name given to the decoder class

Output vars: none

I/O vars: none

ivector decoder::output(cvector symbols, int number_4D_symbols)

Author: Kiaei/Markus Muck

Description: Performs the trellis decoding using the tcm_decode function.

Input vars: cvector symbols: Symbols to be decoded
int number_4D_symbols: Number of useful tones

Output vars: return-value: Decoded data

I/O vars: none

116 MOTOROLA PROPRIETARY INFORMATION

F.4. RECEIVER

ivector decoder::tcm_decode(cvector symbols, ivector bit_distribution, ivector permu-
tation, int number_4D_symbols)

Author: Kiaei/Markus Muck

Description: Here, the trellis decoding is performed using the functions defined in the viterbi_decoder
class.

Input vars: cvector symbols: Symbols to be decoded
ivector bit_distribution: Number of bits per tone
ivector permutation: Real tone number of any ordered tone #x
int number_4D_symbols: Number of useful tones

Output vars: return-value: decoded data

I/O vars: none

F.4.2 DEINTERL.C

DEINTERLEAVER::DEINTERLEAVER()

Author: Markus Muck

Description: This is the constructor of the DEINTERLEAVER class. Here, the deinterleaving
memory is allocated and reset to zero.

Input vars: none

Output vars: none

I/O vars: none

DEINTERLEAVER::˜DEINTERLEAVER()

Author: Markus Muck

Description: This is the destructor of the DEINTERLEAVER class. Here, the memory reserved
for the object name is freed.

Input vars: none

Output vars: none

I/O vars: none

int DEINTERLEAVER::DO_DEINTERLEAVING(unsigned char* Data_out, unsigned
char *data_in, int nbr_frames, int Nb_Bytes_CodeWord, int depth,
unsigned int *nbr_frames_decoded)

Author: Markus Muck

Description: This function performs the deinterleaving using a circular buffer.

MOTOROLA PROPRIETARY INFORMATION 117

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

Input vars: unsigned char* data_in: Data to be deinterleaved
int nbr_frames: Number of codeword frames to be interleaved
int Nb_Bytes_CodeWord: Number of bytes per codeword frame
int dept: Interleaving depth

Output vars: unsigned char *Data_out: Deinterleaved data

I/O vars: none

F.4.3 Descrambler.C

Descrambler::Descrambler(char *Descrambler_name)

Author: Kiaei/Markus Muck

Description: This is the constructor of the Descrambler class. Here, the registers are reset to zero.

Input vars: char *Descrambler_name: Any name given to the object.

Output vars: none

I/O vars: none

Descrambler::Descrambler()

Author: Kiaei/Markus Muck

Description: This is the constructor of the Descrambler class. Here, the registers are reset to zero.
The standard name “scram” is used as name for the descrambler class.

Input vars: none

Output vars: none

I/O vars: none

Descrambler::˜Descrambler()

Author: Kiaei/Markus Muck

Description: This is the destructor of the Descrambler class. Here, the memory reserved for the
object name is freed.

Input vars: none

Output vars: none

I/O vars: none

118 MOTOROLA PROPRIETARY INFORMATION

F.4. RECEIVER

Descrambler::init(int value)

Author: Kiaei/Markus Muck

Description: This functions allows to set the registers of the Descrambler to a certain value.

Input vars: int value: Value ∈ (0, 1, .., 223 − 1) of the Descrambler state.

Output vars: none

I/O vars: none

int Descrambler::output(int datain)

Author: Kiaei/Markus Muck

Description: An arriving bit datain ∈ (0, 1) enters the Descrambler. The resulting Descrambler
state is returned.

Input vars: int datain: Bit entering the Descrambler

Output vars: return-value: Resulting Descrambler state

I/O vars: none

int Descrambler::showreg()

Author: Kiaei/Markus Muck

Description: This functions returns the latest Descrambler state.

Input vars: none

Output vars: return-value: Latest encoder state

I/O vars: none

int Descrambler::display()

Author: Kiaei/Markus Muck

Description: This functions writes the Descrambler name to the standard output stream. It’s for
debugging only.

Input vars: none

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 119

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

F.4.4 receiver_home_part1.C

void receiver_home_part1(double *TimeDomainData, struct Sframe_Properties_CO
Superframe_Properties_CO, unsigned int received_frame_counter, unsigned char *Su-
perframe_Memory_AS)

Author: Markus Muck

Description: This is the first part of the receiving procedure. This functions performs the Removal
of the guard interval, FFT, Tone ordering, Constellation decoding and Trellis decod-
ing using the corresponding classes.

Input vars: double *TimeDomainData: Received time domain data, there are only the real parts.
All imaginary parts are zero.
struct Sframe_Properties_CO Superframe_Properties_CO: Contains the superframe
properties
unsigned int received_frame_counter: Which DMT-symbol is about being decoded
out of all DMT symbols of one superframe

Output vars: unsigned char *Superframe_Memory_AS: The decoded data is written into this buffer

I/O vars: none

F.4.5 receiver_home_part2.C

void receiver_home_part2(struct Sframe_Properties_CO Superframe_Properties_CO,
unsigned char *OutputDataAS, unsigned int *DataTransmittedAS, unsigned char *Out-
putDataLS, unsigned int *DataTransmittedLS,
unsigned char *Superframe_Memory_AS_reception,
unsigned char *Superframe_Memory_LS_reception, unsigned short int *crc_check,
unsigned int *nbr_bits_received_ext)

Author: Markus Muck

Description:

Input vars: struct Sframe_Properties_CO Superframe_Properties_CO: Structure containing the
properties
unsigned int *DataTransmittedAS: Not used right now
unsigned int *DataTransmittedLS: Not used right now
unsigned char *Superframe_Memory_AS_reception: ASX-data of one DMT symbol
as delivered by receiver_home_part1.C
unsigned char *Superframe_Memory_LS_reception: LSX-data of one DMT symbol
as delivered by receiver_home_part1.C

Output vars: unsigned char *OutputDataAS: Buffer for the decoded ASX-data
unsigned char *OutputDataLS: Buffer for the decoded LSX-data
unsigned short int *crc_check: CRC check byte of the decoded superframe

I/O vars: unsigned int *nbr_bits_received_ext: Number of received bytes

120 MOTOROLA PROPRIETARY INFORMATION

F.4. RECEIVER

F.4.6 viterbi_decoder.C

viterbi_decoder::viterbi_decoder(int num_4d_symbols, ivector pointer_table, ivector
bit_distribution,char *viterbi_name)

Author: Kiaei/Markus Muck

Description: This function is the constructor of the viterbi_decoder class. Here, two vectors are
initialized (permutation, BIT_DISTRIBUTION) and some memory for the class name
is allocated. The viterbi_decoder metrics and the path-table is reset to standard values.

Input vars: int num_4d_symbols: Number of tones carrying at least 2 bits per DMT symbol
ivector pointer_table: Real tone number of any ordered tone #x
ivector bit_distribution: Number of bits per tone
char *viterbi_name: Any name given to the class

Output vars: none

I/O vars: none

viterbi_decoder::update_viterbi(int num_4d_symbols, ivector pointer_table, ivector
bit_distribution,char *viterbi_name)

Author: Markus Muck

Description: This function reinitializes the viterbi decoder.

Input vars: int num_4d_symbols: Number of tones carrying at least 2 bits per DMT symbol
ivector pointer_table: Real tone number of any ordered tone #x
ivector bit_distribution: Number of bits per tone char *viterbi_name: Any name given
to the class

Output vars: none

I/O vars: none

viterbi_decoder:: viterbi_decoder()

Author: Kiaei/Markus Muck

Description: This is the constructor of the viterbi_decoder class. The memory allocated for the
class name is freed.

Input vars: none

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 121

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

void viterbi_decoder::BMG_2d(double I,double Q, double *metric)

Author: Kiaei/Markus Muck

Description: The metric for a 2-D coset (→ 1 tone) is calculated.

Input vars: double I: Real part of a encoded constellation
double Q: Imaginary part of a encoded constellation

Output vars: double *metric: Calculated branch metric

I/O vars: none

void viterbi_decoder::BMG_4d(double *metric1, double *metric2)

Author: Kiaei/Markus Muck

Description: Using the result of BMG_2d - done for two tones - the 4-D coset metric is calculated.
The result is saved in an internal variable.

Input vars: double *metric1: 2-D metric of the first tone
double *metric2: 2-D metric of the second tone

Output vars: none

I/O vars: none

void viterbi_decoder::ACS(int iteration_number)

Author: Kiaei/Markus Muck

Description: (A)ddition-(C)ompare-(S)elect function. The path table is build up, one column at
each iteration.

Input vars: int iteration_number: Latest iteration number

Output vars: none

I/O vars: none

void viterbi_decoder::STD(int iteration_number, int number_4D_symbols)

Author: Kiaei/Markus Muck

Description: Tracing the survivor path and calculating the recovered cosets.

Input vars: int iteration_number: Latest iteration number
int num_4d_symbols: Number of tones carrying at least 2 bits

Output vars: none

I/O vars: none

122 MOTOROLA PROPRIETARY INFORMATION

F.4. RECEIVER

void viterbi_decoder::CDP(double I1, double Q1, double I2, double Q2,int j)

Author: Kiaei/Markus Muck

Description: Decoding of the message carried by two tones. For the 2-D coset there are 4 decoding
possibilities. We take the one which leads to the smallest metric (→ we use the
revovered coset calculated by STD).

Input vars: double I1: Real part of the encoded constellation of tone one
double Q1: Imaginary part of the encoded constellation of tone one
double I2: Real part of the encoded constellation of tone two
double Q2: Imaginary part of the encoded constellation of tone two
int j: Latest iteration number

Output vars: none

I/O vars: none

ivector viterbi_decoder::output(cvector symbols, int number_4D_symbols)

Author: Kiaei/Markus Muck

Description: Output of the decoded data using the results of CDP.

Input vars: cvector symbols: Encoded constellations of all tones of one symbol DMT
int num_4d_symbols: Number of tones carrying at least 2 bits

Output vars: none

I/O vars: none

void coset_members(int i,int j,int& offset1,int& offset2)

Author: Kiaei/Markus Muck

Description: Calculating the cosets of two tones (→ v[0, 1], w[0, 1], T1E1 6.6.2, Figure 10).

Input vars: int i: Integer value of U [0..2] (→ T1E1 6.6.2, Figure 10)
int j: Integer value of U [3] (→ T1E1 6.6.2, Figure 10)

Output vars: int& offset1: Resulting coset of tone one as integer value, corresponds to bit-value
v[0, 1]
int& offset2: Resulting coset of tone two as integer value, corresponds to bit-value
w[0, 1]

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 123

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

int coset_ident(int I, int Q)

Author: Kiaei/Markus Muck

Description: Identification of the 2-D coset corresponding the encoded constellation I,Q.

Input vars: int I: Real part of the encoded constellation
int Q: Imaginary part of the encoded constellation

Output vars: return-value: 2-D coset number ∈ (0, 1, 2, 3)

I/O vars: none

int Previous_State(int State, int Branch)

Author: Kiaei/Markus Muck

Description: Finding the previous state of the encoder.

Input vars: int State: Latest state
int Branch: Latest branch decision

Output vars: return-value: Previous decoder state

I/O vars: none

int Coset_Number(int State, int Branch)

Author: Kiaei/Markus Muck

Description: Calculting the 4-D coset corresponding to the latest state.

Input vars: int State: Latest state
int Branch: Latest branch decision

Output vars: return-value: Coset number corresponding to the latest state

I/O vars: none

void Modulo_ACS(double i,double j,double k,double l, double &min, int &branch)

Author: Kiaei/Markus Muck

Description: Performing the (A)ddition-(C)ompare-(S)elect operation. We take THE solution which
guarantees the smallest metric.

Input vars: double i: Metric of solution 0
double j: Metric of solution 1
double k: Metric of solution 2
double l: Metric of solution 3

Output vars: double &min: The resulting branch metric
int &branch: The branch corresponding to the chosen solution ∈ (0, 1, 2, 3)

I/O vars: none

124 MOTOROLA PROPRIETARY INFORMATION

F.5. SUPPORTING FUNCTIONS

int symbol_decode(int present_state, int previous_state

Author: Kiaei/Markus Muck

Description: Calculting the 4-D coset number using the latest state and the previous state of the
decoder.

Input vars: int present_state: Latest decoder state
int previous_state: Previous decoder state

Output vars: return-value: 4-D coset number ∈ (0, 1, .., 7)

I/O vars: none

double Mod16(double Sum)

Author: Kiaei/Markus Muck

Description: Performs a modulo-16 operation. No longer used.

Input vars: double Sum: Integer value

Output vars: return-value: Sum − 16 if Sum ≥ 16, else Sum is returned

I/O vars: none

int BIT_PACKER(int I, int Q, int bits)

Author: Kiaei/Markus Muck

Description: Decoding the bits corresponding to the encoded constellation I,Q.

Input vars: double I: Real part of a encoded constellation
double Q: Imaginary part of a encoded constellation int bits: Max. number of bits in
I,Q

Output vars: return-value: Decoded data (=[V,W], → T1E1 6.6.2, Figure 10)

I/O vars: none

F.5 Supporting functions

F.5.1 cvector.C

Here, a complex vector class of a variable size and some operators are defined.

MOTOROLA PROPRIETARY INFORMATION 125

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

cvector::cvector(int xsize)

Author: Kiaei/Markus Muck

Description: Here, the memory for a new vector of size xsize and its name (standard-name is “?”)
is allocated. The vector is initialized with zero values in the real and in the imaginary
part.

Input vars: int xsize: Vector size

Output vars: none

I/O vars: none

cvector::cvector()

Author: Kiaei/Markus Muck

Description: Here, the memory for a new vector of size “1” and its name (standard-name is “?”) is
allocated. The vector is initialized with zero values in the real and in the imaginary
part.

Input vars: int xsize: Vector size

Output vars: none

I/O vars: none

cvector::cvector(const cvector& v1)

Author: Kiaei/Markus Muck

Description: Here, the memory for a new vector of the same size as “v1” and its name (same name
as “v1”) is allocated. The values of the vector “v1” are used as initial values.

Input vars: const cvector &v1: Vector to be copied

Output vars: none

I/O vars: none

void cvector::init(double *initial_settings)

Author: Kiaei/Markus Muck

Description: This function initialized all values of the complex vector to zero if “double *ini-
tial_settings” = 0. Otherwise, the values in “double *initial_settings” are used as
initial values (“initial_settings[index]” is used for both, the real and the imaginary
part for “cvector[index]”).

Input vars: double *initial_settings: Initial values

Output vars: none

I/O vars: none

126 MOTOROLA PROPRIETARY INFORMATION

F.5. SUPPORTING FUNCTIONS

void cvector::grow(int additional_size)

Author: Kiaei/Markus Muck

Description: This function changes the vector size. The additional elements are initialized with
zero. The old elements are kept.

Input vars: int additional_size: Defines the additional vector size, may also be negative

Output vars: none

I/O vars: none

int &cvector::operator[](int index)

Author: Kiaei/Markus Muck

Description: The [] operator allows to look for a value stored in the vector.
Example: cvector_name[0] looks for the first entry in the vector (index 0).

Input vars: int index: Defines the position in the vector

Output vars: return-value: Complex value stored at position index in the vector.

I/O vars: none

cvector &cvector::operator=(const cvector &v1)

Author: Kiaei/Markus Muck

Description: This operator allows to copy the elements of one vector into another vector of the
same size.

Input vars: const cvector &v1: Vector to be copied

Output vars: return-value: Copied vector

I/O vars: none

F.5.2 generate.C

void generate_bits_per_tone_CO(unsigned short int **BitsPerTone_CO)

Author: Markus Muck

Description: Allocating the memory of the "Bits per Tone"-variable and defining the default values
which are given by the define FILE_BITS_PER_TONE.

Input vars: none

Output vars: unsigned short int **BitsPerTone_CO: Pointer to (not yet allocated) buffer containing
the number of bits per tone

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 127

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

void generate_Superframe_Properties_CO(struct Sframe_Properties_CO
*Superframe_Properties_CO)

Author: Markus Muck

Description: This functions defines some standard values for the simulation properties like number
of redundancy bytes per AS, interleaver deepness, etc. etc.

Input vars:

Output vars: struct Sframe_Properties_CO *Superframe_Properties_CO: Pointer to structure con-
taining the properties

I/O vars: none

void generate_LS_Buffer(unsigned char **InputDataLS, unsigned int *DataToTrans-
mitLS)

Author: Markus Muck

Description: Generation of a random LS Buffer containing “SIZE_LSX_BUFFER” bytes. Memory
for “unsigned char **InputDataLS” will be allocated.

Input vars: none

Output vars: unsigned char **InputDataLS: Buffer for random LS Data
unsigned int *DataToTransmitLS: Number of bytes written

I/O vars: none

void allocate_memory(unsigned char **InputDataAS, int DataToTransmitAS, un-
signed char **Superframe_Memory_AS, unsigned char **Superframe_Memory_LS,
double **TimeDomainData, unsigned char **Redundancy_AS, unsigned char **Re-
dundancy_LS, unsigned char **Data_Interleaved,
unsigned char ** Superframe_Memory_AS_reception,
unsigned char ** Superframe_Memory_LS_reception, unsigned char** OutputDataAS,
unsigned char** OutputDataLS, unsigned char **Redundancy_AS_reception, unsigned
char **Redundancy_LS_reception)

Author: Markus Muck

Description: This function reserves the memory for some variables used during the simulation.

Input vars: int DataToTransmitAS: Number of bits to be transmitted

Output vars: unsigned char **InputDataAS: Pointer to a buffer containing the data to be transmit-
ted
unsigned char **Superframe_Memory_AS: Pointer to an ASX-Buffer
unsigned char **Superframe_Memory_LS: Pointer to an LSX-Buffer
double **TimeDomainData: Buffer for the time domain data created by the transmit-
ter

128 MOTOROLA PROPRIETARY INFORMATION

F.5. SUPPORTING FUNCTIONS

unsigned char **Redundancy_AS: Buffer for the forward-error-correction redun-
dancy data for the ASX
unsigned char **Redundancy_LS: Buffer for the forward-error-correction redundancy
data for the LSX
unsigned char **Data_Interleaved: Buffer for the interleaved data
unsigned char ** Superframe_Memory_AS_reception: Buffer for the received AS-
Data
unsigned char ** Superframe_Memory_LS_reception: Buffer for the received LS-
Data
unsigned char** OutputDataAS: Buffer for the received and decoded AS-data
unsigned char** OutputDataLS: Buffer for the received and decoded LS-data
unsigned char **Redundancy_AS_reception: Buffer for the received forward-error-
correction data concerning the AS-data
unsigned char **Redundancy_LS_reception: Buffer for the received forward-error-
correction data concerning the LS-data

I/O vars: none

F.5.3 ivector.C

Here, an integer vector class of a variable size and some operators are defined.

ivector::ivector(int ivector_size, char *ivector_name, int *initial_values)

Author: Kiaei/Markus Muck

Description: Here, the memory for a new vector of size ivector_size and its name is allocated. The
values of the array initial_values are used as initial values.

Input vars: int ivector_size: Vector size
char *ivector_name: Any name given to the object
int *initial_values: Array of ivector_size of the initial values

Output vars: none

I/O vars: none

ivector::ivector(const ivector &v1)

Author: Kiaei/Markus Muck

Description: Here, the memory for a new vector of the same size as “v1” and its name (same name
as “v1”) is allocated. The values of the vector “v1” are used as initial values.

Input vars: const ivector &v1: Vector to be copied

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 129

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

void ivector::init()

Author: Kiaei/Markus Muck

Description: This function resets all values of the vector to zero.

Input vars: none

Output vars: none

I/O vars: none

void ivector::setname(char *ivector_name)

Author: Kiaei/Markus Muck

Description: This function changes the name of a vector.

Input vars: char *ivector_name: New vector name

Output vars: none

I/O vars: none

void ivector::update_ivector(int ivector_size, char *ivector_name, int *initial_values)

Author: Markus Muck

Description: This function frees the allocated memory of the vector, changes the vector size and the
vector name and allocates the necessary memory for the new vector. It is initialized
by the values of the array int *initial_values.

Input vars: int ivector_size: Vector size
char *ivector_name: Any name given to the object
int *initial_values: Array of ivector_size of the initial values

Output vars: none

I/O vars: none

void ivector::grow(int additional_size)

Author: Kiaei/Markus Muck

Description: This function changes the vector size. The additional elements are initialized with
zero. The old elements are kept.

Input vars: int additional_size: Defines the additional vector size, may also be negative

Output vars: none

I/O vars: none

130 MOTOROLA PROPRIETARY INFORMATION

F.5. SUPPORTING FUNCTIONS

int &ivector::operator[](int index)

Author: Kiaei/Markus Muck

Description: The [] operator allows to look for a value stored in the vector.
Example: ivector_name[0] looks for the first entry in the vector (index 0).

Input vars: int index: Defines the position in the vector

Output vars: return-value: Integer value stored at position index in the vector.

I/O vars: none

ivector &ivector::operator=(const ivector &v1)

Author: Kiaei/Markus Muck

Description: This operator allows to copy the elements of one vector into another vector of the
same size.

Input vars: const ivector &v1: Vector to be copied

Output vars: return-value: Copied vector

I/O vars: none

F.5.4 my_types.C

Here, some basic operations for the complex structure defined in my_types.h are defined.
They are also used by the cvector class.

The complex structure

For compatibility reasons, the complex variables used in the ADSL simulator do not use the
complex.h library. The following structure is used for all complex variables:

typedef struct

{

double re, im;

}

complex;

complex make_complex(double real_v, double imag_v)

Author: Markus Muck

Description: This function converts two double variables into a complex variable.

Input vars: double real_v: Real part
double imag_v: Imaginary part

MOTOROLA PROPRIETARY INFORMATION 131

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

Output vars: return-value: Complex variable (real_v+ j·imag_v)

I/O vars: none

double real(complex v)

Author: Markus Muck

Description: This function returns the real part of a complex variable.

Input vars: complex v: A complex variable

Output vars: return-value: Real part of “v”

I/O vars: none

double imag(complex v)

Author: Markus Muck

Description: This function returns the imaginary part of a complex variable.

Input vars: complex v: A complex variable

Output vars: return-value: Imaginary part of “v”

I/O vars: none

complex cminus(complex c1, complex c2)

Author: Markus Muck

Description: This function performs the “subtraction” operation for a complex variable.

Input vars: complex c1: First complex variable
complex c2: Second complex variable

Output vars: return-value: Subtraction result (c1-c2)

I/O vars: none

complex cplus(complex c1, complex c2)

Author: Markus Muck

Description: This function performs the “addition” operation for a complex variable.

Input vars: complex c1: First complex variable
complex c2: Second complex variable

Output vars: return-value: Addition result (c1+c2)

I/O vars: none

132 MOTOROLA PROPRIETARY INFORMATION

F.5. SUPPORTING FUNCTIONS

complex cmult(complex c1, complex c2)

Author: Markus Muck

Description: This function performs the “multiplication” operation for a complex variable.

Input vars: complex c1: First complex variable
complex c2: Second complex variable

Output vars: return-value: Multiplication result (c1·c2)

I/O vars: none

complex cdiv(complex c1, complex c2)

Author: Markus Muck

Description: This function performs the “division” operation for a complex variable.

Input vars: complex c1: First complex variable
complex c2: Second complex variable

Output vars: return-value: Division result
(

c1
c2

)

I/O vars: none

complex c_exp(complex c1)

Author: Markus Muck

Description: This function performs the “exponential” operation for a complex variable.

Input vars: complex c1: Complex variable

Output vars: return-value: Result of ec1

I/O vars: none

complex c_conj(complex c1)

Author: Markus Muck

Description: This function calculate the “complex conjugate” of a complex variable.

Input vars: complex c1: Complex variable

Output vars: return-value: Result of (c1)∗

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 133

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

F.5.5 routines.C

int bin_to_dec(int *bit_array, int size)

Author: Kiaei/Markus Muck

Description: Converting a bit-array of size size “int *bit_array” containing one bit ∈ (0, 1) per
integer value into an integer value.

Input vars: int *bit_array: Bit array, one bit ∈ (0, 1) per integer value
int size: Size of bit array

Output vars: return-value: Integer value corresponding to “int *bit_array”

I/O vars: none

void dec_to_bin(int *result,int size, int num)

Author: Kiaei/Markus Muck

Description: Converting an integer number “int num” into a series of “int size” bits. The result is
stored in “int *result”, one bit ∈ (0, 1) per integer value.

Input vars: int size: Number of bits
int num: Integer value to be converted

Output vars: int *result: Bit array, one bit ∈ (0, 1) per integer value

I/O vars: none

int power (int basis, int n)

Author: Kiaei/Markus Muck

Description: This function calculates “(basis)n” without using the “pow”-command. “int basis”
and “int n” must be integers.

Input vars: int basis: The basis of (basis)n

int n: The exponent of (basis)n

Output vars: return-value: result of (basis)n

I/O vars: none

unsigned char *memmove(unsigned char* v1, unsigned char *v2, int n)

Author: Markus Muck

Description: This is a substitution for the memmove command of the string library. It must be
activated via the USE_MEMMOVE_OF_STRING_H switch in switch.h. This sub-
stitution has been added for compatibility reasons.

134 MOTOROLA PROPRIETARY INFORMATION

F.5. SUPPORTING FUNCTIONS

Input vars: look at memmove in the C-manual

Output vars: look at memmove in the C-manual

I/O vars: none

void memset(unsigned char* v1, unsigned char value, int n)

Author: Markus Muck

Description: This is a substitution for the memset command of the string library. It must be acti-
vated via the USE_MEMMOVE_OF_STRING_H switch in switch.h. This substitu-
tion has been added for compatibility reasons.

Input vars: look at memset in the C-manual

Output vars: look at memset in the C-manual

I/O vars: none

F.5.6 tools.C

void simulator_usage (void)

Author: Markus Muck

Description: This function writes the command line parameters of the simulator to the standard
output.

Input vars: none

Output vars: none

I/O vars: none

void show_version (void)

Author: Markus Muck

Description: This function write the version number and the release date to the standard output.

Input vars: none

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 135

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

int find_number(char *Data, char Separator)

Author: Markus Muck

Description: This function is used in order to read in an integer parameter which is given in a text-
parameter file. “char *Data” contains one line of text. This function skips all data up
to a separator (for example “:”). The value after that separator is converted into an
integer number.

Input vars: char *Data: One line of text
char Separator: Separation character

Output vars: return-value: converted number

I/O vars: none

void compare_data(unsigned char *P1, unsigned char *P2, int NbBits)

Author: Markus Muck

Description: This function compares “int NbBits” bits of two character arrays. In total, there are
“int NbBits/8” bytes compared and an error message is written to the standard output
if an error occurs (position of the first erroneous bit).

Input vars: unsigned char *P1: Data array 1
unsigned char *P2: Data array 2
int NbBits: Number of bits to compare

Output vars: none

I/O vars: none

void find_bits_in_char(int *bits, unsigned char *source, unsigned int already_sent,
unsigned int to_be_sent)

Author: Markus Muck

Description: This functions copies “to_be_sent” bits of the source string “*source” into the buffer
“*bits” beginning with the “already_sent”th bit of “*source” and the “0”th bit of
“*bits”.

Input vars: unsigned char *source: Buffer where to take the bits from
unsigned int already_sent: Number of bits to be skipped in the “*source”
nsigned int to_be_sent: Number of bits to be sent

Output vars: int *bits: Buffer where to copy the bits

I/O vars: none

136 MOTOROLA PROPRIETARY INFORMATION

F.6. INCLUDE FILES CONTAINING SOME USEFUL #DEFINES

void set_bits(unsigned char *out, int start_out, int bits[], int nr_bits)

Author: Kiaei/Markus Muck

Description: This function copies a certain number of bits from a int-array (one bit ∈ (0, 1) per
integer value) to a character array (eight bits per character).

Input vars: int start_out: Number of first bit to be read
int bits[]: Array where to read the data from
int nr_bits: Number of bits to be copied

Output vars: unsigned char *out: Copied bits

I/O vars: none

void memmove_bits(unsigned char *out, int start_out, unsigned char *in, int nr_bits)

Author: Markus Muck

Description: This function copies a certain number of bits from one byte-array (eight bits per char-
acter) to another.

Input vars: int start_out: Number of first bit to be read
unsigned char *in: Array where to read the data from
int nr_bits: Number of bits to be copied

Output vars: unsigned char *out: Copied bits

I/O vars: none

F.6 INCLUDE files containing some useful #defines

F.6.1 constants.h

#define ADDITIONAL_CIR_SAMPLES

Author: Markus Muck

Description: For the convolution Channel Impulse Response (CIR)∗Transmitted Data X we take
512 samples AND the last “ADDITIONAL_CIR_SAMPLES” samples in order to
guarantee a linear convolution for the last 512 samples.

#define CHANNEL_ESTIMATION_WITH_NOISE

Author: Markus Muck

Description: Should the estimation of the Channel Impulse Response (CIR) be done with or with-
out noise? If active, it’s done with noise (using the SNR defined by “SNR_Transmission”).

MOTOROLA PROPRIETARY INFORMATION 137

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

#define CRC_CHECK_FAST_DATA

Author: Markus Muck

Description: Should the CRC check be performed for the fast or interleaved data ?

#define ERROR_WEIGHTING_ON

Author: Markus Muck

Description: If active, the error (TIR ∗ X) − (TEQ ∗ R) is weighted in the frequency domain
(WSAF algorithm), with X being the transmitted data, R being the received noisy
samples, TIR being the Target Impulse Response filter coefficients and TEQ being
the Time Domain Equalizing filter coefficients. If not active, the error is not weighted
and therefore a primitive LMS algorithm is applied for the filter taps update.

#define FEC_CONTROL_ADRESS_ENCODING

Author: Markus Muck

Description: Standard value for the Reed-Solomon class.

#define FEC_CONTROL_IDLE,
#define FEC_CONTROL_READ_DATA_AND_DIVIDE,
#define FEC_CONTROL_SHIFT_OUT_FROM_MEMORY,
#define FEC_CONTROL_SHIFT_IN_FROM_MEMORY,
#define FEC_CONTROL_SHIFT_OUT_CHECK_BYTES

Author: Markus Muck

Description: Possible values of "control_byte" for "FEC::Encode(Byte, control_byte, addr, nb_red_bytes)".

#define FILE_BITS_PER_TONE

Author: Markus Muck

Description: Name of the file containing the number of bits per tone.

#define FILE_CIR

Author: Markus Muck

Description: Here, the file name of the file containing the Channnel Impulse Response (CIR) time
domain samples is defined.

138 MOTOROLA PROPRIETARY INFORMATION

F.6. INCLUDE FILES CONTAINING SOME USEFUL #DEFINES

#define FILE_COSET_TABLE

Author: Kiaei

Description: A file containing some information on how to do the constellation encoding.

#define FILTER_TAP_UPDATE_WITH_NOISE

Author: Markus Muck

Description: Should the update of the Time Domain Equalizing filter be done with noise ? If active,
it’s done with noise (using the SNR defined by “SNR_Transmission”).

#define FRAMES_PER_SUPERFRAME

Author: Markus Muck

Description: Number of frames per superframe.

#define LENGTH_GUARD_INTERVAL

Author: Markus Muck

Description: Here, this size of the guard interval is fixed (usually 32 samples).

#define MAX_BIT_NUMBER_PER_TONE

Author: Markus Muck

Description: Maximum number of bits per tone.

#define MAX_CARRIER_AMPLITUDE

Author: Markus Muck

Description: Right now, there is the same power for every carrier used, i.e. the maximum amplitude
of each single carrier is limited to the value “MAX_CARRIER_AMPLITUDE”.

#define MAX_INTERLEAVER_BUFFER_SIZE

Author: Markus Muck

Description: Maximum size of the (de)interleaver buffer.

#define MAX_NUMBER_COSETS

Author: Markus Muck

Description: Maximum number of 4-D cosets.

MOTOROLA PROPRIETARY INFORMATION 139

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

#define MAX_NUMBER_REDUNDANCY_BYTES_AS

Author: Markus Muck

Description: Maximum number of redundancy bytes in an ASX frame.

#define MAX_NUMBER_REDUNDANCY_BYTES_LS

Author: Markus Muck

Description: Maximum number of redundancy bytes in a LSX frame.

#define MAX_NUMBER_SYMBOLS_PER_CODEWORD

Author: Markus Muck

Description: Maximum number of symbols per codeword (=S, → T1E1, 6.2.1.2).

#define MAX_SIZE_LSX_PER_SUPERFRAME

Author: Markus Muck

Description: Maximum size of all LSX Buffers in a superframe in bits.

#define MAX_SIZE_SUPERFRAME

Author: Markus Muck

Description: Maximum size of a superframe in bytes.

#define NBR_SYMBOLS_FOR_CHANNEL_ESTIMATION

Author: Markus Muck

Description: It determines, how many symbols should be taken in order to get an accurate estima-
tion of the Channel Impulse Response (CIR).

#define NBR_TEQ_TAPS

Author: Markus Muck

Description: Here, the number of filter taps of the Time Domain Equalizing (TEQ) filter is fixed.
Using the unweighted LMS algorithm, approx. 16 filter taps are sufficient, using the
WSAF algorithm, more filter taps are needed (approx. 64).

140 MOTOROLA PROPRIETARY INFORMATION

F.6. INCLUDE FILES CONTAINING SOME USEFUL #DEFINES

#define NBR_TIR_TAPS

Author: Markus Muck

Description: Here, the number of filter taps of the Target Impulse Response (TIR) filter is fixed.
Usually, the TIR size corresponds to the number of taps of the guard interval.

#define NOISE_DURING_TRANSMISSION_ON

Author: Markus Muck

Description: Should the transmission (after the Time Domain Equalizing filter update, etc.) be
done with or without channel noise ? If active, it’s done with noise (using the SNR
defined by “SNR_Transmission”).

#define NOTICE

Author: Markus Muck

Description: A text string containing some copyright information.

#define NUMBER_TIME_DOMAIN_DATA_CO

Author: Markus Muck

Description: Number of time domain data taps created by the central office transmitter.

#define NUMBER_TONES_CO

Author: Markus Muck

Description: Number of tones in a DMT symbol transmitted by the central office.

#define NYQUIST_REVERB1

Author: Markus Muck

Description: Carrier amplitude for the C-REVERB1 symbol at the Nyquist Frequency Carrier
(#256).

#define PARAMETER_DIRECTORY

Author: Markus Muck

Description: Name of the parameter directory.

MOTOROLA PROPRIETARY INFORMATION 141

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

#define RELEASE_DATE

Author: Markus Muck

Description: A text string representing the release date.

#define REVERB1_AMPLITUDE_PLUS_MINUS_1

Author: Markus Muck

Description: Should the amplitude “± 1” be used for the REVERB1-QAM signal (→ ADSL stan-
dard [3]) or “±1· carrier_amplitude” (i.e. should the transmission power be fixed to
-38dBm/Hz as proposed by the ADSL standard) ?? If active, the amplitude “± 1” is
used for the carriers.

#define SCRAMBLER_INIT_VALUE

Author: Markus Muck

Description: Initial value of the scrambler.

#define SIZE_LSX_BUFFER

Author: Markus Muck

Description: Maximum size of the LSX Buffers in bits.

#define SNR_Transmission

Author: Markus Muck

Description: Here, the signal-to-noise ratio (SNR) for the transmission is fixed in dB.

#define STANDARD_IVECTOR_SIZE

Author: Markus Muck

Description: Standard size of an ivector.

#define SUPERFRAME_DURATION_SEC

Author: Markus Muck

Description: Duration of a superframe in seconds.

142 MOTOROLA PROPRIETARY INFORMATION

F.6. INCLUDE FILES CONTAINING SOME USEFUL #DEFINES

#define TEQ_FIRST_COEFF

Author: Markus Muck

Description: The Time Domain Equalizing (TEQ) filter is initialized with zeros before starting the
filter update. The only exeption is the first filter tap, it is initialized with this value.

#define TEQ_Update_Factor

Author: Markus Muck

Description: The calculated Time Domain Equalizing (TEQ) filter updates are multiplied with this
constant factor. When the number of filter taps is changed or when there are problems
with the convergence properties of the algorithm, the step size must be adjusted here.

#define TEQ_UPDATE_ITERATIONS

Author: Markus Muck

Description: Here, the number of iterations for the Time Domain Equalizing (TEQ) filter is fixed.

#define TWO_SYMBOLS_SIZE

Author: Markus Muck

Description: The size of two OFDM symbols, usually 2 × 512 = 1024 samples.

#define VERSION

Author: Markus Muck

Description: A text string representing the latest version number of the simulator.

F.6.2 debug.h

#define Error(msg)

Author: Marc de Courville

Description: This #define writes an error message to the standard output stream including the mes-
sage “msg”, the line of code where the error occured, the C-filename, etc..

Input vars: msg: Error message to be sent to the standard output stream

Output vars: none

I/O vars: none

MOTOROLA PROPRIETARY INFORMATION 143

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

F.6.3 define.h

Here, quite a lot of abbreviations are defined. We are going to metion only the ones used in
the simulator.

#define OPENFILE(file_pointer,file_name,open_option)

Author: Marc de Courville

Description: This #define is used to open a file.

Input vars: file_name: Name of file
open_option: File options like “rb”, “wb”, ...

Output vars: file_pointer: File handle

I/O vars: none

#define CALLOCVAR(var,cast,number,size)

Author: Marc de Courville

Description: This #define is used to allocate memory.

Input vars: cast: Pointer type like “char*”, ...
number: Number of elements
size: Size per element

Output vars: var: Pointer variable

I/O vars: none

struct Sframe_Properties_CO

Author: Markus Muck

Description: This is the structure containing the properties of a superframe like number of redun-
dancy bytes per AS, interleaver deepness, etc. etc.

F.6.4 switch.h

Here, all compiler switches are defined. It is possible to define, whether the trellis decoding,
the energy (de)scrambling, etc. etc. should take place.

#define ENERGY_SCRAMBLING_OFF

Author: Markus Muck

Description: This switch deactivates (if active) the energy scrambling.

144 MOTOROLA PROPRIETARY INFORMATION

F.6. INCLUDE FILES CONTAINING SOME USEFUL #DEFINES

#define FOR_DEBUG_ONLY_1_FRAME_RECEPTION

Author: Markus Muck

Description: If this switch is active, only one DMT symbol is transmitted and received per super-
frame.

#define INTERLEAVING_OFF

Author: Markus Muck

Description: This switch deactivates (if active) the interleaving and deinterleaving.

#define REED_SOLOMON_ACTIVE

Author: Markus Muck

Description: This switch activates (if active) the Reed-Solomon forward error correction decoding.

#define TRELLIS_TCM_ACTIVE

Author: Markus Muck

Description: If active, the arriving data is decoded using a maximum-likehood decoder (viterbi al-
gorithm). Otherwise, the data will be taken directly without using the error correction
qualities of the convolutional codes.

#define USE_MEMMOVE_OF_STRING_H

Author: Markus Muck

Description: If his define is active, the string.h library is included and its commands like mem-
move, memset, etc. used. If not, the commands memmove and memset as defined in
routines.C are used.

#define VERBOSE

Author: Markus Muck

Description: This switch activates (switch on) or deactivates (switch off) the text ouput to the
standard stream during the simulation process. If active, some information concerning
the simulation, like convolutional encoder state, etc. is displayed.

MOTOROLA PROPRIETARY INFORMATION 145

APPENDIX F. FUNCTION-LEVEL DESCRIPTION OF THE ADSL SIMULATOR

#define VERBOSE_PER_DMT

Author: Markus Muck

Description: Like #define VERBOSE, this switch enables (when active) the text ouput to the stan-
dard stream during the simulation process. Here, quite a lot of information is dis-
played for each transmitted and received DMT symbol.

146 MOTOROLA PROPRIETARY INFORMATION

Appendix G

The Parameter Files of the ADSL
simulator

The simulation parameters can be easily adjusted by editing the parameter files using a text
editor. The file names of the parameter files are defined in constants.h.

G.0.5 FILE_BITS_PER_TONE

The parameter file specified by FILE_BITS_PER_TONE contains the number of bits per
tone ∈ (2, 3, .., 15). Example for this parameter file:

Bits for tone 1: 0

Bits for tone 2: 0

Bits for tone 3: 0

Bits for tone 4: 0

Bits for tone 5: 0

Bits for tone 6: 0

Bits for tone 7: 0

Bits for tone 8: 8

Bits for tone 9: 8

Bits for tone 10: 8

Bits for tone 11: 8

Bits for tone 12: 8
...

Bits for tone 249: 11

Bits for tone 250: 11

Bits for tone 251: 8

Bits for tone 252: 8

Bits for tone 253: 8

Bits for tone 254: 8

Bits for tone 255: 8

MOTOROLA PROPRIETARY INFORMATION 147

APPENDIX H. THE COMMENTS OF THE ADSL SIMULATOR DURING A
SIMULATION

Appendix H

The comments of the ADSL
simulator during a simulation

After starting a simulation, the ADSL simulator always comments the operations it is per-
forming. This facilitates the search for potential bugs in the simulator and gives a good
impression of which calculation module is the most time consuming.

In the following, the comments that occured during a typical simulation are presented.
Hereby, a file named out.txt of size 8236 Bytes is transmitted.

==
STARTING THE ADSL SIMULATOR, (c) 1998-9 by crm, Paris and
Markus Muck (University of Stuttgart, ENST Paris)
==
File containing data to be transmitted: out.txt
simulator: Name of file to be transmitted: out.txt, Size: 8236 Bytes
generate: Bits per tone loaded from file ‘./parameters/BITS_PER_TONE‘, 255 tones altogether
generate: The max. amplitudes for each carrier have been calculated.
generate: FEC Output Frame Size Nmi = 104
channel: Time Domaine Equalizer (TEQ) Filter coefficients are calculated using the WSAF algorithm
within 600 iterations.
channel: The ADSL channel impulse response has been loaded from file ‘./parameters/csa6cr‘.
channel: The noise amplitude per sample is: 7.6298e-07 for a SNR of 60.00 dB for symbol
energy 2.9805e-04.
channel: Resulting TEQ performance: Energy after GI/Total energy of (CIR convolved with TEQ) =
3.15662e-04 (without TEQ: 1.13058e-01)
channel: Time Domaine Equalizer (TEQ) Filter taps calculation done.
transmitter_central_office: Initialization done, bytes per superframe = 6528.
transmitter_central_office: Not yet all data encoded (DataTransmittedAS=0). Data remaining.
transmitter_central_office: Multiplexing done.
transmitter_central_office: Beginning mit FEC for fast MUX frame, Bytes to encode = 12,
Nr redund. Bytes = 4
transmitter_central_office: Reed-Solomon-Encoding done for fast buffer.
transmitter_central_office: Bytes per FEC_Frame: 192, FEC frames: 34, Bytes per MUX frame = 96,
Redundancy bits per MUX frame = 8.
transmitter_central_office: Reed-Solomon-Encoding done.
transmitter_central_office: Scrambling done, scrambler state 5a5122hex.
transmitter_central_office: Time-Interleaving done, codeword-size = 208 bytes
incl. 16 bytes of redundancy.
simulator: treating frame #0 out of #68 frames.
simulator: treating frame #1 out of #68 frames.
simulator: treating frame #2 out of #68 frames.
simulator: treating frame #3 out of #68 frames.
simulator: treating frame #4 out of #68 frames.
simulator: treating frame #5 out of #68 frames.
simulator: treating frame #6 out of #68 frames.
simulator: treating frame #7 out of #68 frames.
simulator: treating frame #8 out of #68 frames.
simulator: treating frame #9 out of #68 frames.
simulator: treating frame #10 out of #68 frames.
simulator: treating frame #11 out of #68 frames.
simulator: treating frame #12 out of #68 frames.
simulator: treating frame #13 out of #68 frames.
simulator: treating frame #14 out of #68 frames.

148 MOTOROLA PROPRIETARY INFORMATION

simulator: treating frame #15 out of #68 frames.
simulator: treating frame #16 out of #68 frames.
simulator: treating frame #17 out of #68 frames.
simulator: treating frame #18 out of #68 frames.
simulator: treating frame #19 out of #68 frames.
simulator: treating frame #20 out of #68 frames.
simulator: treating frame #21 out of #68 frames.
simulator: treating frame #22 out of #68 frames.
simulator: treating frame #23 out of #68 frames.
simulator: treating frame #24 out of #68 frames.
simulator: treating frame #25 out of #68 frames.
simulator: treating frame #26 out of #68 frames.
simulator: treating frame #27 out of #68 frames.
simulator: treating frame #28 out of #68 frames.
simulator: treating frame #29 out of #68 frames.
simulator: treating frame #30 out of #68 frames.
simulator: treating frame #31 out of #68 frames.
simulator: treating frame #32 out of #68 frames.
simulator: treating frame #33 out of #68 frames.
simulator: treating frame #34 out of #68 frames.
simulator: treating frame #35 out of #68 frames.
simulator: treating frame #36 out of #68 frames.
simulator: treating frame #37 out of #68 frames.
simulator: treating frame #38 out of #68 frames.
simulator: treating frame #39 out of #68 frames.
simulator: treating frame #40 out of #68 frames.
simulator: treating frame #41 out of #68 frames.
simulator: treating frame #42 out of #68 frames.
simulator: treating frame #43 out of #68 frames.
simulator: treating frame #44 out of #68 frames.
simulator: treating frame #45 out of #68 frames.
simulator: treating frame #46 out of #68 frames.
simulator: treating frame #47 out of #68 frames.
simulator: treating frame #48 out of #68 frames.
simulator: treating frame #49 out of #68 frames.
simulator: treating frame #50 out of #68 frames.
simulator: treating frame #51 out of #68 frames.
simulator: treating frame #52 out of #68 frames.
simulator: treating frame #53 out of #68 frames.
simulator: treating frame #54 out of #68 frames.
simulator: treating frame #55 out of #68 frames.
simulator: treating frame #56 out of #68 frames.
simulator: treating frame #57 out of #68 frames.
simulator: treating frame #58 out of #68 frames.
simulator: treating frame #59 out of #68 frames.
simulator: treating frame #60 out of #68 frames.
simulator: treating frame #61 out of #68 frames.
simulator: treating frame #62 out of #68 frames.
simulator: treating frame #63 out of #68 frames.
simulator: treating frame #64 out of #68 frames.
simulator: treating frame #65 out of #68 frames.
simulator: treating frame #66 out of #68 frames.
simulator: treating frame #67 out of #68 frames.
receiver_home_part2: Initialization done.
receiver_home_part2: First DEINTERLEAVING call, only 33 codeword(s) = 6864 bytes
could be deinterleaved.
receiver_home_part2: Time Deinterleaving done.
receiver_home_part2: FEC: Fast buffer decoded.
receiver_home_part2: FEC: Bytes per FEC_Frame: 192, FEC frames: 34.
receiver_home_part2: FEC: Reed-Solomon-Decoding done.
compare_data (tools): 65888 bits compared, 5961 errors found -> 9.04717% error rate.
compare_data (tools): The first error occured at bit nr 50690.
transmitter_central_office: All data encoded. No data remaining.
transmitter_central_office: Multiplexing done.
transmitter_central_office: Beginning mit FEC for fast MUX frame, Bytes to encode = 12,
Nr redund. Bytes = 4
transmitter_central_office: Reed-Solomon-Encoding done for fast buffer.
transmitter_central_office: Bytes per FEC_Frame: 192, FEC frames: 34, Bytes per MUX frame = 96,
Redundancy bits per MUX frame = 8.
transmitter_central_office: Reed-Solomon-Encoding done.
transmitter_central_office: Scrambling done, scrambler state f4befhex.
transmitter_central_office: Time-Interleaving done, codeword-size = 208 bytes
incl. 16 bytes of redundancy.
simulator: treating frame #0 out of #68 frames.
simulator: treating frame #1 out of #68 frames.
simulator: treating frame #2 out of #68 frames.
simulator: treating frame #3 out of #68 frames.
simulator: treating frame #4 out of #68 frames.
simulator: treating frame #5 out of #68 frames.
simulator: treating frame #6 out of #68 frames.
simulator: treating frame #7 out of #68 frames.
simulator: treating frame #8 out of #68 frames.
simulator: treating frame #9 out of #68 frames.
simulator: treating frame #10 out of #68 frames.
simulator: treating frame #11 out of #68 frames.
simulator: treating frame #12 out of #68 frames.
simulator: treating frame #13 out of #68 frames.
simulator: treating frame #14 out of #68 frames.
simulator: treating frame #15 out of #68 frames.
simulator: treating frame #16 out of #68 frames.
simulator: treating frame #17 out of #68 frames.
simulator: treating frame #18 out of #68 frames.

MOTOROLA PROPRIETARY INFORMATION 149

APPENDIX H. THE COMMENTS OF THE ADSL SIMULATOR DURING A
SIMULATION

simulator: treating frame #19 out of #68 frames.
simulator: treating frame #20 out of #68 frames.
simulator: treating frame #21 out of #68 frames.
simulator: treating frame #22 out of #68 frames.
simulator: treating frame #23 out of #68 frames.
simulator: treating frame #24 out of #68 frames.
simulator: treating frame #25 out of #68 frames.
simulator: treating frame #26 out of #68 frames.
simulator: treating frame #27 out of #68 frames.
simulator: treating frame #28 out of #68 frames.
simulator: treating frame #29 out of #68 frames.
simulator: treating frame #30 out of #68 frames.
simulator: treating frame #31 out of #68 frames.
simulator: treating frame #32 out of #68 frames.
simulator: treating frame #33 out of #68 frames.
simulator: treating frame #34 out of #68 frames.
simulator: treating frame #35 out of #68 frames.
simulator: treating frame #36 out of #68 frames.
simulator: treating frame #37 out of #68 frames.
simulator: treating frame #38 out of #68 frames.
simulator: treating frame #39 out of #68 frames.
simulator: treating frame #40 out of #68 frames.
simulator: treating frame #41 out of #68 frames.
simulator: treating frame #42 out of #68 frames.
simulator: treating frame #43 out of #68 frames.
simulator: treating frame #44 out of #68 frames.
simulator: treating frame #45 out of #68 frames.
simulator: treating frame #46 out of #68 frames.
simulator: treating frame #47 out of #68 frames.
simulator: treating frame #48 out of #68 frames.
simulator: treating frame #49 out of #68 frames.
simulator: treating frame #50 out of #68 frames.
simulator: treating frame #51 out of #68 frames.
simulator: treating frame #52 out of #68 frames.
simulator: treating frame #53 out of #68 frames.
simulator: treating frame #54 out of #68 frames.
simulator: treating frame #55 out of #68 frames.
simulator: treating frame #56 out of #68 frames.
simulator: treating frame #57 out of #68 frames.
simulator: treating frame #58 out of #68 frames.
simulator: treating frame #59 out of #68 frames.
simulator: treating frame #60 out of #68 frames.
simulator: treating frame #61 out of #68 frames.
simulator: treating frame #62 out of #68 frames.
simulator: treating frame #63 out of #68 frames.
simulator: treating frame #64 out of #68 frames.
simulator: treating frame #65 out of #68 frames.
simulator: treating frame #66 out of #68 frames.
simulator: treating frame #67 out of #68 frames.
receiver_home_part2: First DEINTERLEAVING call, only 34 codeword(s) = 7072
bytes could be deinterleaved.
receiver_home_part2: Time Deinterleaving done.
receiver_home_part2: FEC: Fast buffer decoded.
receiver_home_part2: FEC: Bytes per FEC_Frame: 192, FEC frames: 34.
receiver_home_part2: FEC: Reed-Solomon-Decoding done.
compare_data (tools): 65888 bits compared, 0 errors found -> 0.00000% error rate.

150 MOTOROLA PROPRIETARY INFORMATION

BIBLIOGRAPHY

Bibliography

[1] ADSL Forum General Introduction to Copper Access Technologies, ADSL Forum,
WEB-Address http://www.adsl.com

[2] N. Al-Dhahir, J.M. Cioffi Optimum Finite-Length Equalization for Multicarrier
Transceivers, IEEE Transactions on Communications, vol. 44, no. 1, pp. 56-64, 1996

[3] American National Standards Institute, Inc. Asymmetric Digital Subscriber Line
(ADSL) Metallic Interface, T1E1.4/95-007R2

[4] Walter Y. Chen DSL, Simulation Techniques and Standards Development for Digital
Subscriber Line Systems, Macmillan Technology Series, 1998

[5] Jacky S. Chow, John M. Cioffi, John A.C. Bingham Equalizer Training Algorithms for
Multicarrier Modulation Systems, Proc. ICC, Geneva, pp. 761-765, 1993

[6] Jacky S. Chow, Jerry T. Tu, John M. Cioffi A Discrete Multitone Transceiver System
for HDSL Applications, IEEE journal on selected areas in communications, vol. 9, no.
6, 1991

[7] Peter S. Chow Bandwith optimized digital transmission techniques for spectrally
shaped channels with impulse noise, PhD thesis, Stanford University USA, 1993

[8] J.M. Cioffi, P. S. Chow Line Code Complexity, Amati Communications Corporation,
California, USA, 1995

[9] Marc de Courville, Pierre Duhamel Orthogonal Frequency Division Multiplexing for
Terrestrial Digital Broadcasting, Ecole Nationale Supérieure des Télécommunications
de Paris, 1998

[10] Marc de Courville, Pierre Duhamel Adaptive Filtering in Subbands Using a Weighted
Criterion, IEEE transactions on signal processing, vol. 46, no. 9, 1998

[11] Marc de Courville Utilisation de bases orthogonales pour l’algorithmique adaptive et
l’égalisation des systèmes multiporteuses, PhD thesis, Ecole Nationale Supérieure des
Télécommunications, October 1996

[12] Pierre Duhamel, Martin Vetterli Fast Fourier Transforms: A Tutorial Review and a
State of the Art, Signal Processing, no. 19, pp. 259-299, 1990.

[13] Robert F.H. Fischer, Johannes B. Huber A new loading algorithm for discrete multitone
transmission, IEEE, 1996

MOTOROLA PROPRIETARY INFORMATION 151

BIBLIOGRAPHY

[14] Simon Haykin Adaptive Filter Theory, Prentice-Hall International Editions, Engle-
wood Cliffs, New Jersey, USA, 1983

[15] Minnie Ho, John M. Cioffi High-Speed Full-Duplex Echo Cancellation for Discrete
Multitone Modulation, IEEE, 1993

[16] Emmanuel C. Ifeachor, Barrie W. Jervis Digital Signal Processing: A Practical Ap-
proach, Addision Wesley publishing company, electronic systems engineering series,
1993

[17] David C. Jones Frequency Domain Echo Cancellation for Discrete Multitone Asym-
meric Digital Subscriber Line Transceivers, IEEE transactions on communications,
vol. 43, no. 2/3/4, February/March/April 1995

[18] Irving Kalet, The Multitone Channel, IEEE transactions on communications, vol. 37,
no. 2, February 1989

[19] Steven M. Kay, Fundamentals of statistical signal processing estimation theory,
Prentice-Hall International Editions, Englewood Cliffs, New Jersey, USA

[20] Philip J. Kyees, Ronald C. McConnell, Kamran Sistanizadeh ADSL: A New Twisted-
Pair Access to the Information Highway, IEEE communications magazine, 1995

[21] Inkyu Lee, Jacky S. Chow, John M. Cioffi Performance Evaluation of a Fast Computa-
tion Algorithm for the DMT in High-Speed Subscriber Loop, IEEE journal on selected
areas in communications, vol. 13, no. 9, 1995

[22] William C.Y. Lee Mobile Communications Engineering, McGRAW-HILL Telecom-
munications, 2nd edition, 1998

[23] Shu Lin, Daniel J. Costello, Jr. Error Control Coding: Fundamentals and Applica-
tions, Prentice-Hall Series in Computer Applications in Electrical Engineering, Engle-
wood Cliffs, New Jersey, USA, 1983

[24] Byoung-Ki MIN Architecture VLSI pour le decodeur de viterbi, PhD thesis, Ecole
Nationale Supérieure des Télécommunications, June 1991

[25] Eric Moulines, Joseph Boutros Egalisation Numérique, Ecole Nationale Supérieure
des Télécommunications de Paris, 1998

[26] Gregory J. Pottie, M. Vedat Eyuboglu Combined Coding and Precoding for PAM and
QAM HDSL Systems, IEEE journal on selected areas in communications, vol. 9, no. 6,
1991

[27] John G. Proakis Digital Communications, McGRAW-HILL international editions, 3rd
edition, 1995

[28] Kimmo K. Saarela ADSL, Tampere University of Technology, Finland, 1995

[29] Kamran Sistanizadeh, Peter S. Chow, John M. Cioffi Multi-Tone Transmission for
Asymmetric Digital Subscriber Lines (ADSL), IEEE, 1993

[30] P. P. Vaidyanathan Multirate Systems and Filter Banks, Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1993

152 MOTOROLA PROPRIETARY INFORMATION

BIBLIOGRAPHY

[31] Robert Vallet Etude des canaux sélectifs, Notions de diversité, Ecole Nationale
Supérieure des Télécommunications de Paris, 1995

[32] L. Vandendorpe MMSE equalizers for multitone systems without guard time, 1996

[33] L. Vandendorpe Fractionally Spaced Linear and Decision-Feedback Detectors for
Transmultiplexers, IEEE transactions on signal processing, vol. 46, no. 4, April 1998

[34] B. Widrow, J. M. McCool, M. G. Larimore, C. R. Johnson, Jr. Stationary and non-
stationary learning characteristics of the LMS adaptive filter, Proc. IEEE, vol. 64, pp.
1151-1162, 1976

[35] J. Yang, S. Roy Data-Driven Echo Cancellation for a Multitone Modulation System,
IEEE transactions on communications, vol. 42, no. 5, May 1994

[36] Gavin Young Asymmetric Digital Subscriber Line (ADSL) Technology: Introduction
and Overview, IIR conference, September 1994

MOTOROLA PROPRIETARY INFORMATION 153

LIST OF FIGURES

List of Figures

2.1 An OFDM/DMT symbol in the frequency domain. 24

2.2 Discrete channel model. 25

2.3 Influence of the previous DMT symbol. 26

2.4 General OFDM/DMT transmission system. 28

3.1 The frequency spectrum of ADSL. 30

3.2 The ADSL system reference model. 31

3.3 A complete ADSL transceiver, remote terminal end. 33

4.1 The main function of the ADSL simulator. 39

4.2 The function preparing one superframe for transmission. 40

4.3 The function preparing one DMT symbol for transmission. 41

4.4 The function receiving one DMT symbol. 41

4.5 The function treating one superframe at the reception site. 42

5.1 A guard interval larger than the memory of the channel. 43

5.2 Equalization using a Target Impulse Response (TIR) filter. 46

6.1 The TEQ and TIR filters. 49

6.2 Shortening the Channel Impulse Response (CIR) by a Time Domain Equal-
izer (TEQ). 51

6.3 The optimal structure for the tap update. 58

6.4 A radix-2 butterfly and an efficient solution for a FFT of 512 points. 60

7.1 The channel impulse response (CIR) corresponding to CSA-Loop #6 in the
time and frequency domain. 69

7.2 The initialization of the TEQ filter in the frequency domain. 70

7.3 The TEQ filter after one iteration for 128 and 16 filter taps using the WSAF
algorithm. 71

154 MOTOROLA PROPRIETARY INFORMATION

LIST OF FIGURES

7.4 The TEQ filter after one iteration for 128 and 16 filter taps without a weighted
criterion. 71

7.5 The convergence properties without noise, non-weighted (16 filter taps) and
WSAF (64 filter taps). 72

7.6 The convergence properties without noise, 64 filter taps for the non-weighted
case and the WSAF (zoomed and over 1000 iterations). 72

7.7 The convergence properties with SNR=30dB. 73

7.8 The convergence properties with SNR=40dB. 73

7.9 The convergence properties with SNR=50dB. 73

7.10 The convergence properties with SNR=30dB (zoomed). 74

7.11 The convergence properties with SNR=40dB (zoomed). 74

7.12 The convergence properties with SNR=50dB (zoomed). 74

7.13 The true error during the optimization with SNR=30dB. 75

7.14 The true error during the optimization with SNR=40dB. 75

7.15 The true error during the optimization with SNR=50dB. 76

7.16 The resulting impulse response wn ∗ cn and the one of the TEQ filter (no
noise) using a weighted criterion. 76

D.1 Top level diagram of the various modules of ADSL-SIMULATOR. 89

MOTOROLA PROPRIETARY INFORMATION 155

LIST OF TABLES

List of Tables

3.1 DMT downstream parameters. 32

3.2 DMT upstream parameters. 32

6.1 The complexity of basic operations. 59

6.2 The complexity of FFT operations. 59

6.3 The complexity of FFT operations. 60

6.4 Operations to be performed for the convolution/correlation. 61

6.5 Operations to be performed for the convolution/correlation (with N = 512
carriers and hermitian symmetry in the frequency domain). 61

6.6 The operations for the block LMS (BLMS) algorithm using fast convolu-
tions/correlations. 62

6.7 The operations for the block LMS (BLMS) algorithm using linear convolu-
tions/correlations in the time domain. 63

6.8 The operations for the WSAF algorithm using fast convolutions/correlations. 64

6.9 The complexity of the different filter update algorithms. 65

6.10 The complexity of the different filter update algorithms normalized by the
number of multiplications/additions of the LMS algorithm (performing con-
volutions/correlations in time domain, L = 16 filter taps). 66

6.11 The complexity of the different convolution algorithms. 68

6.12 The complexity of the different convolution algorithms (ADSL). 68

7.1 Initialization of the TEQ filter taps. 70

7.2 Initialization of the TEQ filter taps. 72

7.3 The portion of the remaining energy of wn ∗ cn after the guard interval. . . 77

7.4 Minimum number of iterations for a remaining energy of wn ∗ cn after the
guard interval. 78

156 MOTOROLA PROPRIETARY INFORMATION

