
Autonomic Communications: Exploiting Advanced and
Game Theoretical Techniques for RAT Selection and

Protocol Reconfiguration

Eleni Patouni1, Sophie Gault2, Markus Muck2, Nancy Alonistioti1,
and Konstantina Kominaki1

1Communication Networks Laboratory, Department of Informatics & Telecommunications,

University of Athens, Athens, Greece
{elenip, nancy, kominaki}@di.uoa.gr

2Motorola Labs, Paris, France,
{sophie.gault, markus.muck}@motorola.com

Abstract. The Autonomic Communications concept emerges as one of the most
promising solutions for future heterogeneous systems networking. This notion
implies the introduction of advanced mechanisms for autonomic decision making
and self-configuration. To this end, this paper proposes an integrated framework
that facilitates autonomic features to capture the needs for RAT selection and
device reconfiguration in a Composite Radio Environment. Specifically, a game
theoretical approach targeted to the definition of appropriate policies for
distributed equipment elements is presented. Thus, the user terminals are able to
exploit context information in order to i) identify an optimum trade-off for
(multiple) Radio Access Technology (RAT) selection and ii) adapt the protocol
stack and respective protocol functionality using a proposed component based
framework for transparent protocol component replacement. Simulation and
performance results finally show that the proposed mechanisms lead to efficient
resource management, minimizing the complexity on the network and terminal
side as well as keeping the required signaling overhead as low as possible.

Keywords: autonomic networking, cognitive networks, reconfiguration

1 Introduction

Future beyond 3rd Generation (B3G) systems are expected to exploit the full benefits of
the diversity within the radio eco-space, composed of wide range of systems such as
cellular, fixed, wireless local area and broadcast. In this framework, it is important to
provide suitable means on the network and terminal side serving as an enabler for this
vision. Such vision is captured by the notion of autonomic communications which
provides the grounds for the deployment of advanced concepts, including a device
agnostic and protocol independent approach for an hierarchy of systems with self-
managing, self-configuring and self-governance features. Beyond the conceptual merits
of such an approach, the following key issues need to be addressed in a practical context:
i) Manage the complexity on the network and user terminal side and provide policy

communication means, ii) Minimize required signaling overhead and iii) Provide means
for the device dynamic adaptation following the decision for RAT selection.
The first of these items typically motivates a distributed system concept as analyzed in
[1] in the context of autonomic communications where self-managing devices with
behavior controlled by policies are introduced. Furthermore, we assume the introduction
of a suitable cognitive channel which covers, besides policy related information, future
context data helping the devices to perform decisions. Item ii) relates to the policies
themselves, leading to the observation that simple, global policies (applicable to all
users) should be preferred to user specific rules in order to assure a minimum signaling
overhead. In addition item iii) is related to the introduction of a framework incorporating
the necessary mechanisms that enable the dynamic adaptation/reconfiguration of the
protocol stack.
In the context of this paper, all these principles are highlighted; the rest of this
contribution is organized as follows: Section 2 defines the general study framework
portraying the problem that is examined in this contribution. A RAT selection analysis
for a simple two-user context, based on game theoretic tools is presented in section 3. A
framework for the dynamic protocol reconfiguration over heterogeneous RATs is
analyzed in section 4. Finally, related work and conclusion remarks as well as directions
for future research are highlighted in section 5 and 6 respectively.

2 Problem Statement

In this analysis, a composite radio environment, in terms of a distributed network of
heterogeneous Radio Access Technologies (RATs), is considered, as illustrated below
(Fig. 1). A multitude of users is assumed to compete for access to one or several RATs
and one or several distinct communication channels (in terms of spectrum usage) in
parallel. An efficient operation requires suitable RAT/channel selection algorithms: in
heterogeneous and reconfigurable wireless systems, terminals and network equipments
should incorporate enhanced capabilities for adapting to the drastically changing
environment.
Towards this direction, this paper analyzes an integrated framework that facilitates
autonomic features to capture the needs for RAT selection and device reconfiguration in
a Composite Radio Environment. At first, the process of selecting a RAT targeted to the
optimum adaptation of users is addressed. Following the RAT selection, the dynamic
device adaptation to the new RAT should take place, to cope with application and QoS
requirements. For example, after a change in the RAT, an update in a protocol
component/codec may be triggered (either network initiated or device initiated) for
various reasons: i) to compensate for QoS degradation, ii) to provide a protocol patch
update to fix a software bug iii) to provide a new version of an existing component with
enhanced capabilities. In this sense, a generic framework is provided that handles the
necessary mechanisms for downloading, installation and on-the-fly activation of missing
protocol-related RAT components. The following subsections highlight the focus and
design assumptions in each of the previously mentioned reconfiguration phases.

2.1 RAT Selection Context

The RAT selection phase addresses an efficient attribution of corresponding resources to
a specific user (different RATs such as WiMAX, WiFi (IEEE802.11a/b/g/n, etc.), 3GPP,
DVB-T or DAB, different bands, etc.) in a distributed system, minimizing the required
complexity in the network and user side as well as the signaling overhead. The focus is
laid on techniques that are fully compatible with legacy technologies; the proposed
approaches are also applicable to future air-interfaces, following the trend for the
deployment of a (physical or virtual) cognitive channel as a single new element to be
exploited for finding optimum resource usage strategy. These approaches are meant to
be transparent to the physical user – any reconfiguration process is handled
automatically by the equipment devices.
In addition, each terminal/user can apply several strategies in order to get the best
service requested by the user. Multi-mode and reconfigurable terminals have the
capability to connect simultaneously to several wireless network resources and also to
reconfigure themselves in order to connect to new radio access technologies available in
a cell. Given that multi-mode and reconfigurable network equipments inherently provide
enhanced capabilities (by either dynamically adapting a specific radio access resource, or
by reconfiguring some nodes to dynamically provide higher system capacity, depending
on demands in a given area), consequently, the terminals should automatically adapt to
the new scenario.

Virtual Ethernet
network

Fig. 1: A distributed network approach in a multicell context with different Cellular Access Points

(CAPs).

Moreover, it is assumed that the system is organized in an entirely distributed way: the
network propagates “policies” (e.g., via the Cognitive Channel) which define generic
behavioral rules to be applied by any network and user equipment. Consequently, the
network/user equipment is NOT parameterized by any central controller, but adapts
autonomously (typically applying “Autonomic Networking” principles) to the constantly
changing environment. This finally leads to a distributed optimization of the resource
use. In the same example, a possible environmental change triggering user adaptation is

illustrated: a RAT terminates its services and the remaining resources (RATs, bands,
etc.) must thus be split among the active users.
The problem addressed within this paper concerns the optimum adaptation of users to a
changing context/environment using autonomic networking and policy-based self-
governance principles. A mechanism is proposed that enables users to adapt their
resource use autonomously (applying autonomic networking approaches and relying on
policy based self-management), such that a suitable compromise is found that is near-
optimum from the perspective of a specific user (“get maximum data rate, even if I
penalize other users”) and from the network perspective (“maximize total network
throughput and split resources fairly among all users”).

2.2 Protocol Reconfiguration

Following the RAT selection, the protocol reconfiguration phase is aimed to address
generic mechanisms for the deployment of transparent plug-in of protocol components in
equipments. The presented solution is aligned with a set of assumptions regarding the
design aspects of the proposed architecture and mechanisms:

- a protocol stack is composed of discrete protocol layers. The communication
between them is established either using standard defined interfaces, i.e.
Service Access Points (SAPs) or queue-based communication schemes. This
design also facilitates the maintenance of cross layer optimization issues in the
protocol stack. In addition, this design provides the capability of specifying a
protocol stack according to application needs, QoS requirements as well as the
specific RATs.

- A protocol layer is composed of protocol components. Each protocol
component may specify specific protocol functionality (i.e, if we consider a
TCP protocol, a TCP component may realize the congestion control algorithms)
or a combination of different functionalities (i.e, a TCP component that realizes
both congestion control and flow control algorithms).

The introduced framework based on the above considerations is aimed to cope with the
following protocol reconfiguration aspects: the dynamic binding of component services
into a fully fledged protocol service as well as the runtime replacement of protocol
functionality. Specifically, this solution extends the typical Manager-centric
architectures for the establishment of component bindings introducing a distributed
model. Such model apportions the above mentioned functionality to the protocol
components. The latter is based on a semantic-layer of information which describes
static characteristics of the components as well as dynamic characteristics to capture the
environment configuration.
The above analyzed mechanisms are incorporated into a generic management and
control architecture enabling dynamic protocol reconfiguration via self-configuring
protocol components (Fig. 2). In particular, the following key elements are identified:

- The Download Manager module which caters for the software download in the
system, as well as for authorization procedures and integrity checks.

- The Installation Manager, which is responsible for post-download steps as well
as the software installation to the system.

- The Decision Manager module which specifies concrete decision concerning
reconfiguration actions, based upon a set of policy rules and contextual
information. In the scope of this paper, such module is responsible for the
protocol stack configuration, in terms of specifying the different protocol layers
and components to be used, as well as for triggering a protocol stack update.

- The Autonomic Manager module, which is responsible for the overall
monitoring and control of the software operation, i.e., it instantiates the various
components/triggers the component replacement process.

 Download
Manager
Module

 Installation
Manager
Module

Protocol Stack Configuration Control Module API

 Decision
Manager
Module

Layer 1

Layer2

Layer N

.

. Metadata Metadata

Metadata Metadata Au
to

no
m

ic

M
an

ag
er

Fig. 2: A Management and Control Architecture Enabling Self-Configuring Protocols

3 Analysis of Game Theory based RAT Selection in a Simple Two-
User Context

Considering a simple two-user scenario, this section illustrates the application of a game-
theoretic analysis [2] in order to derive suitable policy rules directing the user behavior.
It is shown that global policies, applicable to all users, reduce the RAT selection
convergence time considerably. Moreover, a global policy assures a minimum signaling
overhead, since the user terminals are not addressed independently as it is the case of a
centralized approach. The main aspects presented below can be extended to more
complex scenarios consisting of a multitude of heterogeneous RATs and a multitude of
users at the cost of an increased complexity for the RAT selection and search for suitable
policies. This generalization, however, is out of the scope of this paper and will be
discussed in future contributions.

3.1 Scenario Definition

The following scenario is considered in this analysis: An operator controls four
IEEE802.11n Access Points (APs), each operating in a distinct 20MHz band and at a

distinct carrier frequency. There are two Mobile Terminals (MTs) communicating over
1, 2, 3 or all of the available bands. The operator decides to switch off one AP, and
indicates this information by propagating a corresponding message to the MTs. The MTs
then need to redefine their spectrum / AP use autonomously. Each MT has the choice
among seven possible spectrum allocation strategies denoted from S1 to S7:

1) S1: use band #1; 2) S2: use band #2;
3) S3: use band #3; 4) S4: use bands #1 and #2;
5) S5: use bands #2 and #3; 6) S6: use bands #1 and #3;
7) S7: use bands #1, #2 and #3.

A simplified throughput computation model is used, assuming a throughput per band (or
channel) equal to D bit/s. When a given channel is reserved to only one MT, the total
throughput D is available for the MT. In case it is split among two MTs, the total
throughput decreases due to collisions: D’ = D*d where 0<d<1 is a kind of penalty
factor, and each MT gets a throughput of D’/2 = D*d/2 with 0<d<1. In the examples
below, we choose “d=0.9” for illustration purposes. The issue addressed is to find the
best combination of strategies for both MTs such that maximal throughput is achieved
for both.

3.2 Performance Analysis

The analysis is carried through the 2D game table presented below; the rows and the
columns correspond to the strategies of MT1 and MT2 respectively. In addition, the
table elements correspond to pairs of throughput values (MT1 throughput, MT2
throughput), obtained when MT1 and MT2 are using a given combination of strategies.

Table 1. Overall game table (1st column: User 1 strategies, 1st line: User 2 strategies)

 S1 S2 S3 S4 S5 S6 S7

S1 (0.45, 0.45) (1,1) (1,1) (0.45, 1.45) (1,2) (0.45, 1.45) (0.45, 2.45)

S2 (1,1) (0.45, 0.45) (1,1) (0.45, 1.45) (0.45, 1.45) (1,2) (0.45, 2.45)

S3 (1,1) (1,1) (0.45, 0.45) (1, 2) (0.45, 1.45) (0.45, 1.45) (0.45, 2.45)

S4 (1.45, 0.45) (1.45, 0.45) (2, 1) (0.9, 0.9) (1.45, 1.45) (1.45, 1.45) (0.9, 1.9)

S5 (2, 1) (1.45, 0.45) (1.45, 0.45) (1.45, 1.45) (0.9, 0.9) (1.45, 1.45) (0.9, 1.9)

S6 (1.45, 0.45) (2, 1) (1.45, 0.45) (1.45, 1.45) (1.45, 1.45) (0.9, 0.9) (0.9, 1.9)

S7 (2.45, 0.45) (2.45, 0.45) (2.45, 0.45) (1.9, 0.9) (1.9, 0.9) (1.9, 0.9) (1.35, 1.35)

To give an example: in the first cell on the upper left corner, user 1 chooses “strategy
S1” and user 2 equally chooses “strategy S1”; in conclusion, both users are sharing a
single channel where collisions may occur and the throughput per user is ½*d = 0.45.
After analyzing the game table, the existence of a unique Nash equilibrium when both
users choose strategy S7 (red cell) is apparent. In fact, this forms a stable state which no
user would find it interesting to deviate from. However, it is not Pareto efficient since
better couples of throughputs are obtained with other combinations (yellow cells).
If a given user follows the simple rule of always targeting the maximal throughput, no
matter what are the consequences on the other user, he will choose strategy S7 and reach

the states corresponding to the green cells; this situation results in an operating point
which is suboptimal, in spite of being a Nash equilibrium.
For instance, suppose users play in turn, as represented with the orange arrows in Table
1. If users are in an initial state such that both users pick up strategy S1 (the normalized
throughput they both achieve equals to 0.45) and if user 2 is the first to play, he will try
to achieve the maximal throughput and therefore chooses strategy S5 (he achieves
throughput equal to 2 instead of 0.45). Then given the new strategy of user 2, user 1 will
try to maximize its throughput in turn and chooses strategy S7 (the normalized
throughput he achieves equals to 1.9 instead of 1). Finally, user 2 responds by selecting
strategy S7 and the equilibrium is reached, since both users achieve throughput equal to
1.35 and no one can improve its throughput by modifying only its own strategy.

3.3 Derivation of suitable policies

The idea is to establish controlled competition so as to get the fairest split of resources
and reach the states corresponding to the yellow cells. This is achieved by the use of
simple policies propagated by the operator, e.g. “do not use strategy S7”.
The operating point search is made on the following suitable where strategy S7 has been
removed for both users. If the game is played based on this table (Table 2) and users still
follow the simple rule of always seeking for the maximal throughput (no matter what are
the consequences on the other user), the states corresponding to the yellow cells will
systematically be reached.
For example, suppose again that users play in turn, following the orange arrows
represented on Table 2. If users are in the same initial state as previously (both users
select strategy S1 and achieve normalized throughput equal to 0.45) and if user 2 is the
first to play, he will choose strategy S5 (he achieves a maximal throughput equal to 2
instead of 0.45). Then given the new strategy of user 2, user 1 will try to maximize its
throughput in turn and chooses indifferently strategy S4 or S6 to get 1.45 instead of 1.
Since the resulting throughput of user 2 is also maximized (he cannot achieve better
throughput than 1.45), this new configuration is an equilibrium, which is clearly more
efficient than the previous equilibrium where users both picked up strategy S7.

Table 2. Modified game table (1st column: User 1 strategies, 1st line: User 2 strategies)

 S1 S2 S3 S4 S5 S6

S1 (0.45, 0.45) (1,1) (1,1) (0.45, 1.45) (1,2) (0.45, 1.45)

S2 (1,1) (0.45, 0.45) (1,1) (0.45, 1.45) (0.45, 1.45) (1,2)

S3 (1,1) (1,1) (0.45, 0.45) (1, 2) (0.45, 1.45) (0.45, 1.45)

S4 (1.45, 0.45) (1.45, 0.45) (2, 1) (0.9, 0.9) (1.45, 1.45) (1.45, 1.45)

S5 (2, 1) (1.45, 0.45) (1.45, 0.45) (1.45, 1.45) (0.9, 0.9) (1.45, 1.45)

S6 (1.45, 0.45) (2, 1) (1.45, 0.45) (1.45, 1.45) (1.45, 1.45) (0.9, 0.9)

At this point it should be pointed out that the use of a very fundamental policy rule
expressing a constraint on the strategy selection (“do not use strategy S7”), makes it
possible to avoid sub-optimal Nash equilibrium.

3.4 Analysis of impact of policy introduction

In the following figures, the game evolution in four different scenarios is illustrated:
• Scenario 1: users play simultaneously and do not consider policy rules;
• Scenario 2: users play simultaneously and respect the previously mentioned

policy rule;
• Scenario 3: users play in turn (i.e. one after each other) and do not consider policy

rule;
• Scenario 4: users play in turn and respect the previously mentioned policy rule.

Fig. 3: Convergence of strategies.

Fig. 4: Data Rates

The first series of four graphs (Fig. 3) represents the evolution of the users’ choice of
strategy for the set of four scenarios, while the second (Fig. 4) represents the users’
throughput evolution for the same four scenarios. It should be noted that a configuration
where users play in turn converge to the equilibrium faster than when users play
simultaneously. Moreover, the curves confirm that the use of an appropriate policy rule
helps the system to converge towards an absolutely efficient equilibrium.

4 A Framework for Dynamic Protocol Reconfiguration over
Heterogeneous RATs

This section highlights the procedure of protocol reconfiguration, describing the
proposed framework and mechanisms through a reconfiguration scenario over
heterogeneous RATs.

4.1 Protocol Reconfiguration

The section analyzes the fundamental phases of the protocol reconfiguration procedure,
Firstly, the mechanisms involved in the protocol stack bootstrap are considered. In
addition, a simple case that the decision mechanisms embedded in the terminal dictate
that a protocol reconfiguration should take place is presented. This decision concerns the
downloading, installation and on-the-fly activation of a protocol component.

Control Signaling for Protocol Stack Bootstrap
During the protocol stack bootstrap, a configuration of the protocol stack is selected by
the autonomic decision making functionality; such configuration specifies the protocol
layers that should form the protocol stack as well as the components that should be used
within each protocol layer. Thereafter, the Decision Manager informs the Autonomic
Manager about the protocol layer configuration and the protocol component
configuration. After acknowledging the reception of this information, the Autonomic
Manager proceeds with the instantiation of the protocol components selected for each
protocol. Considering that the binding between the protocol layers is realized via the
standard defined Service Access Points (SAPs), the focus is on the procedures related to
the protocol component binding and replacement. Therefore, the reconfiguration
signalling depicted in Figure 1 illustrates only the instantiation of two protocol
components that form a protocol layer (Component TestA and Component TestB) [16].

Semantic-Based Dynamic Binding of Protocol Components
Next, the semantic-based dynamic binding of protocol components is performed.
Specifically, the components evaluate the dynamic characteristics of their metadata and
identify the components there are composed with. Finally they establish the bindings to
the components they are composed with.
The details of this procedure are illustrated with an example; a protocol layer comprised
of two autonomic protocol components (CompA and CompB) is considered and the

dynamic binding of these components is analyzed. In this case study a unidirectional
communication pattern between the protocol components is assumed, in the sense that
CompA sends data to CompB. The XML representation for the metadata profiles of
CompA and CompB is illustrated in Fig. 5 (a) and (b) respectively.
The metadata profiles include static characteristics specifying the component
identification (name, version, path to source code), whereas the dynamic characteristics
depict their current configuration in the system and are dynamically updated according
to the different protocol stacks stratification (dynamic characteristics include arrays for
input and output components and their static characteristics). For example, as depicted in
Fig. 5 (a), the protocol component CompA does not provide any input interface, whereas
it provides an output interface to CompB.
Based on the interpretation of the metadata profile, the component composition is
realized. During this phase at first, CompA checks the input array in its metadata, which
does not include any components. Thereafter, it checks its output array, which includes
CompB. Next, it should verify the composition between CompA and CompB by
checking that the input array in CompB metadata includes CompA. The same procedure
is applied by CompB. At this point it should be clarified that this procedure also applies
for all the protocol components regardless of the number of components they are
composed with.

 <?xml version="1.0" encoding="ISO-
8859-1" ?>

<component>
 <id> CompB</id>
 <version>Version 1</version>
 <path>/CompB</path>

 <inputs>
 <input No="1" />
 <id>CompA</id>
 <version>Version 1</version>
 <path>/CompA</path>
 </inputs>

 <outputs>
 <output No="0" />
 </outputs>

 </component>

 <?xml version="1.0"
encoding="ISO-8859-1" ?>

<component>
 <id> CompA</id>
 <version>Version 1</version>
 <path>/CompA</path>

 <inputs>
 <input No="0" />
 </inputs>

 <outputs>
 <output No="1">
 <id>CompB</id>
 <version>Version 1</version>
 <path>/CompB</path>
 </output>
 </outputs>

 </component>

 (a) (b)
Fig. 5: Metadata profiles for protocol components CompA and CompB

After the validation and verification of the composition, the component communication
establishment is realized. Specifically, each component establishes a communication link
for each component it is composed with by creating a FIFO queue. The latter is realized
with the use of a unique key. Such key is generated by a conversion function that
produces a global unique output based only on a unique parameter, the concatenated
String of the ID of the specified component and the ID of the component it is composed

with. In addition, it should be noted that with the use of this ID, the specified component
creates or accesses a FIFO queue, depending if it already exists in the system. The
composition verification and establishment procedures are repeated for all the protocol
components that are bound to the specified component.

Control Signaling for Protocol Reconfiguration
This phase comprises the necessary steps for the protocol reconfiguration process. Such
procedure may be triggered by a change in the environment (new RAT/cellular system,
handover procedures), or the QoS requirements posed by applications or user
preferences. Next, the decision module specifies the new protocol stack configuration.
Based on contextual information about the protocol stack, it identifies whether the
specified components exist in the system. In case of missing components, as in the
scenario in Fig. 6 the Decision Manager should select the appropriate protocol
component from the repository available in the network. Thereafter, the Autonomic
Manager requests the Download Manager to perform the component downloading. After
the successful realization of this procedure, the component installation in the system is
performed by the Installation Manager. Finally, the Decision Manager informs the
Autonomic Manager about the new system configuration.
Regarding the selection of the most appropriate protocol component from the network, a
theoretical approach is introduced. At first the interface compatibility between the
stationary and available components is checked; then the compatible components are
compared in order to select the “best”, based on the QoS it may provide and the delay
introduced for its downloading in the system.
This analysis is based on a modular system with the following formulation [8]. Let us
assume there are i protocol components, with input-output interfaces. In this sense,
compatible components have the same interfaces with the same components. The
methodology to find the compatible components is based on the Graph Theory. Every

group of compatible components belongs to a module is . Further, { }321 ,, sssI = is

the set of these modules, is module comprises all the compatible components. Each

module is associated with: 1) a vector of output variables is PP
i

 ∈
, which describes the

output interfaces of the protocol components. Each module has an initial estimate
0

iP of
its vector, which defines the output interface of the initial protocol components

connection. 2) a set of input interfaces vectors from it’s neighbour modules is PP i
'' ∈

and iN which specifies the modules with which modules belonging to I need to

interact. 3) An objective function iQ : that is a measure of how well the output vector

iP of the specified module satisfies the task of the module, given its inputs from all its
surrounding modules:

() ()

ii sssss PQPPPQ =321 ,,
,

() () ()iii
iissss Pg

PqPPPQ
i λ

1,, 321 +=
, where

iq is the quality of service function of each protocol component, ig is the delay

function of each protocol component and iλ depends on the number of the replaced
components.
The decision procedure, in terms of replacing a compatible component with the one can

be modelled as a game. Specifically, a game with { }321 ,, sssI = players is

considered; in our example the game has three players 32 1 s and , ss . Each player is

associated with a decision vector (An individual decision vector 1s
P

, 2sP
and 3sP

) and a
payoff function. During the course of the game, which is a sequence of stages and

moves, each player chooses a specific decision vector. The payoff function Q evaluates

the performance of the player based on its decision isP
 and the decisions from the other

players that influence the decision of player i. The I player game starts; each player
wants to find the decision that optimises its payoff. In particular, a solution requires: 1) a
concept of what is meant to be optimality 2) decision making models that allow for the
computation of this equilibrium. There exist no cooperation among the players and each
player makes its own decision independently. The game theoretic integration framework
is a particular solution to the integration problem where the decision making model is
defined in the context of no cooperative games.

Dynamic Replacement of Protocol Components
After evaluating the new protocol configuration, the Autonomic Manager should
perform the replacement of the old protocol component with the new one. At first, the
Autonomic Manager pauses the functionality of the component under replacement and
retrieves its execution state (Fig. 6). Next, the Autonomic Manager instantiates the new
component and dispatches to it the retrieved state information. Based on the acquired
state information and its metadata, the new component realizes its dynamic composition
with existing software components (by accessing the FIFO queues that correspond to
existing communication links). The above analyzed on the fly replacement process also
allows the reliable operation of the software under configuration, since it applies state
management models to ensure the transparent switching from the old to the new
component.

Decision
Module

Download
Manager

Installation
Manager

Autonomic Manager Component
TestA

Component
testB

Component
testC

1: retrieve protocol s tack configuration

2: identify protocol layers

3: identify protocol components within each layer

4: pass protocol layer configuration

6: pass protocol component configuration

5: ack

7: ack

9: ack

10: instantiate protocol component

11: ack

12: checkComposition

13: bind

14: checkComposition

15: bind

16: negotiate for new configuration

17: download new component

18: downloaded successfully

19: install new protocol component

20: installed successfully

21: send new component configuration

22: replace (old Component, new Component)

23: pause

24: wait until old component is stopped

25: retrieve state

26: instantiate the new component

27: check Composition

28: bind

8: instantiate protocol component

Fig. 6: Signaling for Protocol Stack Bootstrap and Protocol Self-Configuration

4.2 Validation and Performance Assessment

Targeted to verify and validate the introduced framework, a proof-of-concept prototype
is implemented, concerning the dynamic binding and reconfiguration capabilities of test
protocol components. Specifically, this prototype concerns the deployment of the
following functionality: a) the Autonomic Manager, b) a test protocol which comprises
of two protocol components (CompA and CompB presented in the example) with

unidirectional communication as well as the component metadata and c) the presented
reconfiguration framework upon its application in the test protocol.
Exploiting the mechanisms and procedures presented in the previous sections, the
implemented Autonomic Manager initiates these two protocol components; thereafter
the protocol components discover and access their metadata files and automatically
establish their bindings. In addition, a simple reconfiguration scenario was realized, in
terms of replacing CompB with another component with similar functionality (CompC),
during runtime operation of this test protocol. Following the scenario presented in Fig. 6,
the dynamic replacement of CompB was achieved; in addition the new component
incorporated itself seamlessly by taking into account the current system composition and
configuration. Furthermore the reliable operation of the test protocol was preserved
during the replacement process, in terms of achieving no loss of protocol data or existing
connections. Therefore the process of autonomic component self-configuration (dynamic
component binding and replacement) was successfully validated under the current
prototype, thus proving that the protocol components, when reassembled, form the
initially specified protocol functionality.
Furthermore, the performance assessment of the proposed system was considered taking
into account that in communication devices, the protocol stack subsystem must meet
strict performance requirements. Another aspect that should be taken into consideration
is the overhead introduced by the incorporation of autonomic features in the new
framework, in terms of performance metrics. In order to address these issues and
validate the feasibility of the autonomic approach, performance evaluation studies were
executed considering the following factors:

- the calculation of the overhead that is created for the dynamic establishment of
bindings between the protocol components, due to the introduced of autonomic
capabilities,

- the calculation of the time that is necessary for the specified protocol
reconfiguration to take place

The delay associated to the reconfiguration of the protocol was defined as the time
interval from the time instance the existing protocol component is being signalled by the
Autonomic Manager to stop its operation until the time instance the new protocol
component is successfully incorporated in the system. The time interval for the original
framework includes the following operations:

- Autonomic Manager waiting in idle state until the old component stops (so as
the old component is in a safe state at the time of replacement),

- Instantiation/initialization of the new protocol component by the Autonomic
Manager,

- Self-configuration of the new protocol component (the new protocol component
identifies and establishes its bindings with the existing protocol components on
its own)

In particular, Fig. 7 (a) illustrates the binding delay for each component within a set of
100 samples, considering the underlying hardware capabilities (Pentium III 800MHz PC
with 512MB RAM) and operating system (Debian Linux 3.0 R4). The mean value for
this binding delay is 787,46 μsec for CompA and 462,89 μsec for CompB. The minimum
value of the binding delay is found to be 505 μsec for CompA and 415 μsec for CompB,
whereas the maximum value is 2039 μsec and 694 μsec for CompA and CompB
respectively (it should be noted that the delay is greater for CompA compared to

CompB, since the Autonomic Manager firstly initiates CompA; this way CompA creates
the communication queue, whereas CompB simply accesses it).
Moreover, Fig. 7 (b) illustrates the delay that was introduced for the protocol
reconfiguration, for a set of 100 samples, considering the aforementioned experiment
setup capabilities. The mean value for this delay is 2381 μsec (the minimum and
maximum values are 2284 and 2456 μsec correspondingly).
The performance evaluation studies proved that the deployment of the proposed
framework and the introduction of autonomic capabilities in the protocol components
have minimum performance impact in the system, thus increasing its flexibility.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90
Samples

tim
e

in
 μ

se
c

CompB
CompA

2150

2200

2250

2300

2350

2400

2450

2500

1 10 19 28 37 46 55 64 73 82 91 100

samples

tim
e

in
 μ

se
c

Fig. 7: (a) Binding Delay for the autonomic components within a set of 100 samples, (b) Total
time for the replacement of the old component with the new one

5 Related Work

The vision for autonomic computing and communications was the basis for several
research activities in the past years in both industry and academia. These activities
spawn across the definition, design and deployment of self-* features in emerging
communication systems and devices [6]. Following the model proposed by IBM [5], an
autonomic system should at least incorporate four attributes: self-configuring, self-
healing, self-optimizing and self-protecting, known as self-CHOP features. On the other
side, additional features for autonomic communications systems are addressed in [7],
including self-awareness, self-adaptation, self-implementation and self-description.
In addition, several work was performed in the context of deploying the above presented
self-* features. Since one of the basic capabilities addressed in autonomic
communication environments is the autonomic decision making, previous work in policy
based management was considered. In particular, the approach presented in [9] should be
mentioned, which addresses the policy management issue from a new perspective
through posing it as a problem of learning from current system behavior, while creating
new policies at runtime in response to changing requirements. A hierarchical policy
model is used to capture users and administrators’ higher level goals into network level
objectives.
Moreover, regarding the introduction dynamic configuration or autonomic capabilities in
software subsystems, several other approaches extend the conventional software design.

The above concept was initially applied to X-kernel, Cactus and Appia frameworks,
which deal with protocol composition based on microprotocol objects so as to fulfill the
application QoS requirements [13][14] . In addition, the CORBA Component Model
specifies components for distributed software systems, However it is not appropriate for
use in autonomic environments due to its limitations regarding standard defined
interfaces and limited extension of object functionality [10][11]. Moreover, the Accord
Programming Framework enables the development of autonomic components, but gives
limited information on the design blueprints, pertaining to the establishment of
component composition and replacement [12].
Furthermore, a different vision on protocol stack design for autonomic communication
based on the POEM model is analysed in [15]. This cross-layer design focuses on the
advantages of layering and the benefits of holistic and systematic cross-layer
optimization is at the core of this work. Finally, a Java-based protocol suite that supports
protocol subsystems is analyzed in [17]. This system introduces great performance
overhead (10:1) and does not specify the mechanisms required to achieve on-the-fly
protocol reconfiguration.
Regarding the game theoretical analysis, it should be noted that it has recently attracted
much attention in the general context of resource allocation in wireless networks.
Moreover, it can be seen as an appropriate optimization tool for a fully distributed and
scalable implementation (with a complexity transferred and shared out on the terminal
side), where traditional centralized decision becomes computationally infeasible as the
number of terminals in a cell, or the number of carriers in a multicarrier setting grows.
Game theory has been applied to many wireless network problems, related to the
physical, medium access or higher layers. In those problems, users are generally
competing for a limited resource while having a limited knowledge of their environment,
and therefore the strategic non-cooperative game model is often used, where each player
selfishly tries to maximize its own utility regardless of the consequences its choice may
have. For example, [3] deals with a power control game for wideband (e.g. CDMA-
based) systems. Random access protocols, in particular ALOHA, are addressed in [4].

6 Conclusion

This paper presented a framework to cope with RAT selection and the requirement for
transparent plug-in of protocol-related RAT components in heterogeneous systems. The
study results illustrate that a suitable introduction of policies applicable by user terminals
impact the system behaviour considerably. The simple example in a two-user context
proved, that the interdiction of one strategy (applicable to all users) avoids sub-optimum
equilibria and leads to a quasi-immediate convergence in terms of RAT selection
strategy. As a follow-up of this work, the corresponding behaviour needs to be analyzed
in more complex scenarios consisting of an increased number of users and RAT
selection choices.
In addition, a protocol reconfiguration framework was analyzed, which provides the
necessary mechanisms for component-based protocol reconfiguration. The signaling for
the four basic phases of this procedure was specified as well as the mechanisms that
enable the transparent protocol component self-configuration. Finally the validation of

the proposed framework proved its feasibility, thus the introduction of minimum
performance overhead in the system.

Acknowledgments. This work has been performed in the framework of the IST project
IST-2003-507995 E2R II [18], which is partly funded by the European Union. The
authors would like to acknowledge the contributions of their colleagues.

References

1. J. Strassner, “Autonomic networking – theory and practice”, In Proc. 9th IFIP/IEEE
International Symposium on Network Management (IM’2005), Nice, France, May 2005.

2. D. Fudenberg and J. Tirole, “Game Theory”, MIT Press, ISBN 0-262-06141-4, USA, 1991.
3. C.U. Saraydar, N.B. Mandayam and D.J. Goodman, “Efficient Power Control via Pricing in

Wireless Data Networks,” IEEE Trans. on Communications, Feb. 2002.
4. A. B. MacKenzie and S.B. Wicker, “Selfish users in Aloha: a game theoretic approach,” In

Proc. Vehicular Technology Conference (VTC), vol. 3, Oct. 2001.
5. Jeffrey O. Kephart, David M. Chess. "The Vision of Autonomic Computing," Computer,

vol. 36, n° 1, pp. 41-50, Jan. 2003
6. Murch, R., Autonomic Computing, Prentice Hall, 2004.
7. M.Smirnov, “Research Agenda for a New Communication Paradigm”, Fraunhofer FOKUS

White Paper, Nov. 2004, http://www.autonomic-
communication.org/publications/doc/WP_v02.pdf

8. H. Isil Bozma and James S. Duncan, “A game Theoretic Approach to Integration of Modules”,
IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no. 11, November 1994

9. N. Samaan and A. Karmouch, “An Automated Policy-Based Management Framework for
Wired/Wireless Differentiated Communication Systems” in special issue of JSAC on
Autonomic Communication systems, December 2005, Volume 23, Number 12

10. Wang, N., Schmidt, D.C., O'Ryan, C. Overview of the CORBA Component Model. In
Component-Based Software Engineering: Putting the Pieces Together, Addison Wesley,
Editors G.T. Heineman and W.T. Council. 2001.

11. OMG CORBA Components, version 3.0, June (2002), http://www.omg.org/
12.H. Liu and M. Parashar. A component based programming framework for autonomic

applications. In Proceedings of the International Conference on Autonomic Computing, New
York, NY, 2004.

13.Norman C. Hutchinson and Larry L.Peterson: The x-kernel: An architecture for implementing
network protocols. IEEE Transactions on Software Engineering, 17(1):64-76, January 1991.

14.Sergio Mena, Xavier Cuvellier, Christophe Gregoire, Andre Schiper: Appia vs. Cactus:
Comparing Protocol Composition Frameworks. 22nd International Symposium on Reliable
Distributed Systems (SRDS'03), Florence, Italy, October 2003.

15.X. Gu, X. Fu, H. Tschofeni, L. Wolf, “Towards Self-Optimizing Protocol Stack for Autonomic
Communications: Initial Experience”, in the Proceedings of the 2nd IFIP International
Workshop on Autonomic Communication (WAC'05), Athens, Greece, October 2005.

16.E.Patouni, N.Alonistioti “A Framework for the Deployment of Self-Managing and Self-
Configuring Components in Autonomic Environments”, in the Proceedings of the International
IEEE WoWMoM Workshop on Autonomic Communications and Computing (ACC 06)
Niagara-Falls, Buffalo-NY, 26-29 June 2006.

17.B.Krupczak, K.L.Calvert, M.A.Ammar, Implementing Communication Protocols in Java, IEEE
Communications Magazine, October 1998.

18.End-to-End Reconfigurability (E2R II), IST-2003-507995 E2R II,
http://www.e2r2.motlabs.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

